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ABSTRACT 

An optimization analysis is presented for the design of axisymmetric 

The analysis is rocket motor nozzles with chemically reacting gas flows. 

based upon the usual assumptionsfor reacting flows, An arbitrary number 

of chemical species and chemical reactions are included in the analysis. 

The problem is formulated to maximize the pressure thrust integral along 

the supersonic nozzle wall contour for a general isoperimetric constraint, 

such as constant nozzle length or constant nozzle surface area. 

ing partial differential equations for reacting flows are incorporated 

into the analysis by means of Lagrange multipliers. 

optimization analysis are a set of partial differential equations for 

determining the Lagrange multipliers in the region of interest, and a 

set of algebraic equations for determining initial conditions for these 

The govern- 

The results of the 

Lagrange multipliers on the boundaries of the region. 

the complete set of equations for the gasdynamic properties and the Lagrange 

multipliers constitutes a system of first order, quasi-linear, non-homo- 

geneous partial differential equations of the hyperbolic type, which can 

be treated by the method of characteristics. 

patibility equations for the system are presented, A technique for em- 

ploying the results to determine optimum thrust nozzle contours is pre- 

sented. 

It is shown that 

The characteristic and com- 
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I INTRODUCTION 

Many high energy propel lan t  combinations used i n  propuls ion engines 

experience a considerable  d i f f e rence  between the  pred ic ted  performance 

based upon i s e n t r o p i c  s h i f t i n g  equi l ibr ium and the  a c t u a l  performance. 

These losses  a r e  due both t o  the  presence o f  boundary layers  and t o  the  

nonequilibriwn processes  assoc ia ted  with chemical recombination lags ,  

thermodynamic r e l axa t ion ,  and ve loc i ty  and thermal lags  assoc ia ted  with 

the  flow of  condensed phases,  In  the  process  of  supersonic  combustion, 

t h e  lo s ses  assoc ia ted  with the  nonequilibrium process of chemical re lax-  

a t ion  can completely determine the  success or f a i l u r e  of  t h e  system. In  

view o f  t h e  important e f f e c t  of t h e  chemical recombination process  i n  

t h e  exhaust nozzle o f  both rocket engines and a i r  brea th ing  engines,  it 

i s  obvious t h a t  t h e  nozzle  design m u s t  be given ca re fu l  considerat ion.  

The Jet  Propulsion Center, Purdue Universi ty ,  has had a continuing 

i n t e r e s t  i n  both nozzle  ana lys i s  and design techniques f o r  s eve ra l  years ,  

as evidenced by references 1 through 13. 

and Murthy presents  an opt imizat ion technique for t he  design of three-  

dimensional nozzles f o r  homentropic, p e r f e c t  gas flows. The p resen t  

ana lys i s  p re sen t s  an opt imizat ion technique f o r  t he  design of axisym- 

metric nozzles  whose working f l u i d  is  a chemically r eac t ing  gas .  

A recent  paper by Thompson 
8 

The first attempt a t  nozzle  design by applying opt imizat ion tech-  

niques was made by Guderley and Hantsch14 f o r  an axisymmetric, hometropic 

flow i n  a nozzle  of  f ixed  length,  Raol’ la ter  considered t h e  same problem 
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as t h a t  i nves t iga t ed  by GuderPey and Hantsch, and developed a design 

technique which has proven t o  be much easier t o  apply, A s  a r e s u l t ,  

Rao’s technique i s  i n  wide use throughout t he  rocket  indus t ry ,  Guderley 

analyzed the  d i f f e rences  between the  approaches of references 14 and 15, 

and extended the  ana lys i s  t o  axisymmetric, i s e n t r o p i c  flows with non- 

constant  entropy between s t reaml ines ,  A l l  of these  analyses were based 

on a one-dimensional cont ro l  sur face ,  i l l u s t r a t e d  i n  Figo 1, cons i s t ing  

of t he  l e f t  running Mach l i n e  BC which passes  through the  nozzle e x i t .  

This approach i s  permissible  when no d i s sapa t ive  e f f e c t s  are present  i n  

the  flow f i e l d ,  so t h a t  a11 the  thermodynamic p rope r t i e s  along t h e  con t ro l  

su r f ace  can be determined uniquely as a funct ion of  t h e  ve loc i ty  of the  

flow, 

r e l a t i o n s h i p  between thermodynamic var iab les  and EIQW ve loc i ty ,  

16 

Ef fec t ive ly ,  t he  path taken by a s t reaml ine  does not  affect t h e  

Guderley and Amitage  ‘’’IL8 fomula%ed the  problem of obtaining the  

optimum contour f o r  a f ixed  nozzle sur face  area, 

e n t i r e  region ABC i n  F igo  P must be mnsrdered,  

was a l s o  r e s t r i c t e d  t o  a Kx-d i s sapa t rve  flow f i e l d ,  t he  technique can 

be employed f o r  dissaptnve flows since t h e  e n t i r e  flow f i e l d  i s  included 

i n  t h e  opt imizat ion ana lys i s ,  

techniques developed i n  references 17” and 18, 

In  t h i s  approach, t h e  

Although t h i s  ana lys i s  

The pzesent  analysis is based upon the  

AppPeton” presented a sne-dimensional r e l axa t ion  technique f o r  min- 

imizing t h e  recombination losses  i n  a nozzle ,  

the  two-dimensional effects i n  t he  nozzle o r  t h e  e x i t  divergence lo s s .  

Burwell e t  .lo2’ developed a design technique based upon a two-dimensional 

ana lys i s  of  a r eac t ing  flow m truncated p e r f e c t  nozzles ,  

No account is taken of 

This technique 
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has no guarantee of producing the optimum contour, although the resu l t s  

obtained by such an approach are very useful .  

an improvement i n  that the two-dimensional nature of the flow i s  accounted 

fo r ,  and the optimum contour i s  obtained by employing t h e  techniques of 

the calculus of variat ions,  

The present analysis  i s  
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11. TECHKICAL DEVELOPMENT 

A. Analysis of Chemically Reacting Flows 

The p resen t  ana lys i s  is  based upon t h e  usual  assumptions f o r  

axisymmetric chemically r eac t ing  flows as discussed i n  re ferences  

21, 22,  and 23. 

t h e  supersonic  por t ion  of t h e  nozzle.  

t h e  supersonic  region must be known. As discussed by Der22 and Craig, 

t h e  flow i n  the subsonic por t ion  of  t he  nozzle can be t r e a t e d  by one- 

dimensional techniques t o  determine a t r anson ic  i n i t i a l  value l i n e .  

The method of c h a r a c t e r i s t i c s  can then be employed t o  obta in  the  flow 

f i e l d  downstream of t h e  t h roa t ,  thus  e s t a b l i s h i n g  a known flow f i e l d  

with which t h e  opt imizat ion procedure can be i n i t i a t e d .  

The opt imizat ion procedure w i l l  be appl ied only t o  

Hence, the flow f i e l d  up t o  

23 

The equations governing t h e  axisymmetric flow of a chemically 

r eac t ing  gas are developed i n  Appendix A i n  a form s u i t a b l e  f o r  t he  

present  appl ica t ion .  This set of  equations is  v a l i d  f o r  any number 

of  chemical spec ies  and any number of chemical r eac t ions .  

i ng  system of equations is appl icable .  

The follow- 

PUx + PVY + upx + vpy = - - PV 
Y 

puux + pvuy + Px = 0 

puvx + pvv + P = 0 
Y Y  
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n 2 2 
UP + VP - a upx - a vpy = 1 $i(p,p,ck) 

Y i= 1 X (4) 

V" 

ai = wi N 1 (VYr - v '  ) [ K~~ - K r r  9 [':,I 2 ' j ( 6 )  
r= 1 i r  j =  1 j = l  

n 

i= 1 
P = pT 1 CiRi 

n 
h = 1 Cihi 

i=l 

T 
= I C .dT + hy 

hi P l  
TO 

(9) 

The spec ies  source funct ion ai  was obtained from the  law of  mass ac t ion .  

The forward and r e v e r s e - r e a c t i o n  rate cons tan ts ,  Kf r  and Krr, are obviously 

func t ions  of temperature. 

expressed as v a r i a t i o n s  i n  P, p ,  and Ck by employing the  p e r f e c t  gas law, 

Eq. (8) ,  

t h a t  v a r i a t i o n s  i n  ai can be expressed i n  terms of v a r i a t i o n s  i n  P,  p ,  and 

C k o  

t h e  terms 1 Jli(P,p,Ck) and oi(P,p,Ck), the  term Ck denotes t h a t  t h e  funct ion 

involved depends upon a l l  n of t h e  mass f r a c t i o n s .  

However, v a r i a t i o n s  i n  temperature can be 

In t h e  present  ana lys i s ,  t h i s  s u b s t i t u t i o n  has been made so 

Simi lar  comments apply t o  the  funct ion Jli, defined by Eq. (7). In  

The flow of a chemically r eac t ing  gas is completely descr ibed by t h e  

above set of equations,  Eqs. (1) through ( l o ) ,  These equat ions w i l l  be 
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incorporated i n t o  t h e  opt imizat ion ana lys i s  t o  insure  t h a t  a phys ica l ly  

r e a l i z a b l e  s o l u t i o n  i s  obtained,  

B o  Formulation of  t h e  Optimization Problem 

In t h e  present  ana lys i s  of optimum t h r u s t  nozzle contours f o r  chemically 

r eac t ing  gas flows, only t h e  supersonic  por t ion  of  t h e  nozzle can be optimized. 

The subsonic and t ransonic  nozzle contours must be prescr ibed  beforehand, and 

the  optimum nozzle contour obtained is  then the  b e s t  contour f o r  t h a t  par-  

t i c u l a r  choice o f  subsonic and t r anson ic  geornetrics only. 

has been employed by Guderley 14, l6,l7,l8 and Rao” i n  t h e i r  nozzle opt imizat ion 

s t u d i e s  involving i n e r t  gas flows. 

This r e s t r i c t i o n  

The model t o  be considered a s  i l l u s t r a t e d  i n  Fig,  1. The r i g h t  running 

c h a r a c t e r i s t i c  AB o r ig ina t ing  a t  po in t  A on the  nozzle wall s epa ra t e s  t h e  flow 

f i e l d  i n t o  t h e  upstream region which is  f ixed  by the  given subsonic and t r an -  

sonic  contours,  and the  downstream region which w i l l  be a f f ec t ed  by v a r i a t i o n s  

i n  the  nozzle contour. The nozzle ends a t  po in t  C, and t h e  l e f t  running Mach 

l i n e  BC passing through po in t  C i n t e r s e c t s  the  r i g h t  running Mach l i n e  AB a t  

po in t  B o  

The t h r u s t  developed by the  por t ion  of  t h e  nozzle between A and C i s  

determined by i n t e g r a t i n g  the  pressure  fo rces  ac t ing  on the  nozzle wall AC, 

The flow f i e l d  beyond t h e  l e f t  running Mach l i n e  BC w i l l  have no effect on 

t h e  nozzle  t h r u s t ,  and need not  be considered i n  the  ana lys i s .  

then becomes t h e  determination of  t h e  optimized nozzle  contour,  y = q(x ) ,  

which develops maximum t h r u s t  f o r  t h e  given subsonic and t r anson ic  contours 

sub jec t  t o  some r e s t r i c t i o n s  on the  allowable supersonic  contour, f o r  example, 

f ixed  nozzle  length,  f i xed  nozzle  su r face  a rea ,  etc,  

The problem 

The optimum nozzle 
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contour is obtained by applying the  techniques of t he  calculus  of va r i a -  

t i o n s  t o  t h e  flow f i e l d  i n  region ABC. 

The t h r u s t  term t o  be maximized along AC is given by 

Thrust = 1; (P-Po) rlrl' dx F =  2n 

where y = q(x)  is the  des i r ed  optimum contour. The engineering aspec t  

of  t he  problem e n t e r s  through the  s p e c i f i c a t i o n  of  a general  i sope r i -  

metric cons t r a in t  G[q,n*,P)  which is imposed on t h e  nozzle contour by 

forc ing  t h e  i n t e g r a l  of  G(rl ,n ' ,P)  along AC t o  be constant.  The general  

i sope r ime t r i c  cons t r a in t  i s  spec i f i ed  by the  following equat ion,  

C 

A 
S = \ G ( b n ' , P )  dx = Constant 

The func t ion  G can be  s p e c i f i e d  a t  t h e  d i s c r e t i o n  of  t h e  nozzle designer .  

Examples of  cons tan t  length,  constant  arc length,  cons tan t  su r f ace  area, 

and constant  weight are presented i n  Sect ion 11. E, 

which the  t h r u s t  i s  t o  be maximized i s  forced t o  be a gas s t reaml ine  by 

including t h e  equation of a s t reamline,  mul t ip l ied  by r ~ p  to  s impl i fy  

f u t u r e  manipulations,  as a cons t r a in t .  

The l i n e  AC along 

rlp(url' - v) = 0 on AC (13) 

In  order  t o  in su re  t h a t  t he  so lu t ion  obtained i s  phys ica l ly  poss ib le ,  

t he  equations which govern t h e  flow of  a chemically r eac t ing  gas are in-  

troduced i n t o  the  opt imizat ion problem as cons t r a in t s  by means of Lagrange 



9 

mul t ip l i e r s .  Equations (1) through (4) can be represented symbolical ly  

by the  d i f f e r e n t i a l  opera tor  L 
j '  

L j (x ,  y ,  v,  p ,  ck) = 

Equation (5) can be represented symbolically by the  d i f f e r e n t i a l  oper- 

a t o r  Mi e 

The t h r u s t  i s  t o  be maximized by allowing a r b i t r a r y  v a r i a t i o n s  i n  

the  following parameters.  

p z W Y  I 
The e x t a  problem is  formulated i n  terms of t h e  following expression,  

which is  t o  be he ld  s t a t iona ry .  

where C I B  C2, h 

i s  requi red  t o  be s t a t i o n a r y  f o r  a r b i t r a r y  v a r i a t i o n s  i n  the  parameters 

l i s t e d  i n  Eq, (16) ,  When expanded, Eq. (17) has the  following form. 

and gi a r e  Lagrange m u l t i p l i e r s ,  The above expression 
j '  
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In  order  t o  reduce t h e  a lgeb ra i c  complexity of t h e  ana lys i s ,  va r i a -  

t i o n s  w i l l  no t  be  taken i n  a l l  of t h e  parameters simultaneously. 

t i o n s  i n  u, v, P, p, and C a r e  taken i n  Sect ion I I o C o ,  and v a r i a t i o n s  

i n  the  nozzle  contour ?(x) and end poin t  Xc are taken i n  Sect ion 1 I . D .  

This procedure i s  permissible  s ince  a l l  t h e  v a r i a t i o n s  a r e  independent 

of each o ther .  

are summarized i n  Sect ion I I . F ,  

C, Variat ions of Gas Proper t ies  

Varia- 

k 

The r e s u l t s  obtained after taking a l l  of t h e  v a r i a t i o n s  

A d e t a i l e d  development of t h e  r e s u l t s  presented i n  t h i s  s ec t ion  is 

presented i n  Appendix B o  

(18) r e s u l t s  i n  the  following expression,  

Taking v a r i a t i o n s  of u, v, P,  p, and Ck i n  Eq. 
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( n n ' 6 P  + C1Gp6P + C2np(n16u - 6v)) dx + 1: 

1 6(PUUX) + 6(pvu ) + - 6 P  
+ h2 Y ax ' J  + 

6(puvX) + ~ ( P V V  ) + 
Y a Y  

The following expansion of t h e  terms i n  the  second l i ne  of E q .  (19) i s  

applicable in region ABC. 

The frozen speed of sound appearing i n  E q .  (19) i s  given by 

2 C P P  a = yRT = CpRT/Cv - 
cw- .P 
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Taking va r i a t ions  of Eq.  (22) y i e lds  

2 
6P 

a 2 a n 

i= 1 
6a2 = a2 1 ai6Ci + - P 6~ - - P 

where 

1 a = - (Cpi - yCvi) i Cp 2 1 

Green's theorem i n  the  plane t o  t h e  terms under the  i n t e g r a l  over region 

Subs t i t u t ing  Eqs. (ZO), (21) and (23) i n t o  Eq.  (19), and applying 

ABC, t he  following r e s u l t  is  obtained. 

C 

A 
{VV'~P + C 1 P  G 6P + C2~p(n'6u - 6v)) dx + 

+ {I:- 1:- /l}{hlyp6v + hlyv6p + h2pv6u + h 3 P V ~ V  + 

3 

? 

n 

i=l 

2 + h36P + h4v6P - h4a v6p + p v  1 gi6Ci dx - 

- {If if- I:] (hlyp6u + hlyu6p + h2pu6u + h3pu6v + 

n 

i= 1 

2 + h 6P + h4u6P - h4a u6p + pu 1 gi6Ci dy + 2 

I n 
+ h4Px - h4a P, + P 1 gi(CiIx 

i= 1 

2 6u + 
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n + h P - h4a 2 p + p 1 gi(Ci)y 

4 Y  Y i=l  

I + [ -yu(hl)x - yv(hl)y + h2uux + h VU + h3UVx + h3VVy + 

2 Y  

2 2 ai(CiIx + 7 1 Px - p + a (h4u)x + a (h v) + h4ua 
4 Y  i=l 

n 

i=l  
+ u C g i (C i Ix  + 

n 

+ h4va2{ i=l 

n n 

i=l i=l i= 1 

2 

i= 1 

n n 
- h4 k= 1 1 ($k)Ci - k= 1 1 gk('k)Ci] "J dxdy = 

Consider t he  l i n e  i n t e g r a l s  appearing i n  Eq. (25). Note t h a t  along AC, 

where y = rl(x), 

Subs t i t u t ing  Eq. (26) i n t o  Eq. (25),  and not ing t h a t  t he  l i n e  i n t e g r a l s  

must equal zero independently of t he  sur face  i n t e g r a l s  f o r  a r b i t r a r y  
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va r i a t ions  i n  the  gas p rope r t i e s ,  t he  following equations are obtained. 

1: { [C2npn' + h2pv - h2puv' - h l ~ p n 1 ]  6u + 

+ h4v - h2n' - h4uv' + C G ] 6P + + [QTII + h3 1 P  

+ [-h a 2 v + hlnv + h4a 2 UTI' - hlnUo'] b 
4 

n 

i= 1 
+ 1 [pvgi - puTI~gi] 6Ci 

+ [h3dx - h2dy + h4vdx - h4udy] 6P + 

2 2 
+ [-h4a vdx + hlyvdx + h4a udy - hlyudy] 6p + 

(28) 
n 

i-1 
+ 1 [pvgidx - pugidyl 6Ci 

Since the  l i n e  i n t e g r a l  i n  Eq. (27) must equal zero for a r b i t r a r y  

values  of 6u, bv, 6P, 6p ,  and 6Cib t he  c o e f f i c i e n t s  of t hese  v a r i a t i o n s  
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must equal zero i d e n t i c a l l y ,  r e s u l t i n g  i n  the  following r e l a t ionsh ips  

which are v a l i d  along t h e  nozzle wall AC. 

hl = C2 

uh3 - Vh2 + VQ + UG C P 1  

Since no v a r i a t i o n s  i n  

(29) 

= o  (30) 

gas p rope r t i e s  are allowed i n  the  kerne l ,  

t he  v a r i a t i o n s  i n  gas p rope r t i e s  along r i g h t  running c h a r a c t e r i s t i c  AB 

w i l l  automatical ly  be zero.  

zero and no new condi t ions r e s u l t  along t h a t  l i n e .  

along the  e x i t  cont ro l  c h a r a c t e r i s t i c  BC are a r b i t r a r y .  

t h a t  t he  c o e f f i c i e n t s  of t h e  va r i a t ions  i n  Eq. (28) be equal t o  zero, 

r e s u l t i n g  i n  the  following r e l a t ionsh ips  which apply along the  e x i t  

con t ro l  c h a r a c t e r i s t i c  BC. 

Thus, the  l i n e  i n t e g r a l  along AB w i l l  be 

However, t h e  v a r i a t i o n s  

This requi res  

YY'hl + (UY' - v)h2 = 0 

2 yhl - a h4 = 0 

= o  (i = 1, ..., li, (34) g i  

Returning t o  the  su r face  i n t e g r a l  appearing i n  Eq. (25), t h e  va r i a -  

t i o n s  i n  gas p rope r t i e s  must be a r b i t r a r y  over t he  region of i n t e g r a t i o n .  

Hence, t he  c o e f f i c i e n t s  of the  v a r i a t i o n s  must be i d e n t i c a l l y  zero. After 
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some manipulation, inc luding  the  s u b s t i t u t i o n  of  t h e  o r i g i n a l  system 

equat ions,  Eqs. (1) through (4) ,  t h e  following set  of p a r t i a l  d i f f e r e n t i a l  

equations f o r  determining t h e  Lagrange m u l t i p l i e r s  i n  region ABC is 

obtained. 

1 2 
-h u - h v - - h4 (Py - a P,) + y(hlIy + U(h3)x + 

2 Y  3 Y  p 

1 1 2 2 - h P + - h P + yu(hl)x + yv(hlIy + a (h2Ix + a (h31x = K4 (38) 
P 4 X  P 4 Y  

( i  = 1, . * ,  rl) (39) 2 h4a a. (UP + VP 1 + Pu(giIx + pv(giIy = Ji 
1 x  Y 
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n n 

2 n 2 
i= 1 i=l i=l 

2 n  n a K~ = h4 p 1 qi - h4 1 (a J ' ~ ~  + qip) - I: g i b  uiP + sip) + 

n n 
Ji - - gi - pv - h4 1 ('k)Ci - 1 gk('k)Ci (i = l,.., n) (44) 

Y k= 1 k= 1 

Equations (1) through (5), toge ther  with Eqs. (35) through (39) ,  con- 

s t i t u t e  a system of (8+2n) p a r t i a l  d i f f e r e n t i a l  equations f o r  determining 

t h e  (8+2n) va r i ab le s  u, v, P, p ,  Ci, hl ,  h2,  hg, h4 and gi. 

Appendix E,  t hese  (8+2n) equations form a system of quas i - l i nea r ,  non- 

homogeneous, first order  p a r t i a l  d i f f e r e n t i a l  equations of t h e  hyperbol ic  

type.  Thus, t h i s  system of  equations can be replaced by an equivalent  

system of c h a r a c t e r i s t i c  and compat ib i l i ty  equat ions,  which are t o t a l  

d i f f e r e n t i a l  equat ions of t h e  first order.  

system w a s  obtained. Along gas s t reaml ines ,  

As shown i n  

The following c h a r a c t e r i s t i c  

*=I 
dx u 

pudu + pvdv + dP = 0 

n 

i=l 

2 1 dP - a dp = - 1 $i dx U 

pudC = a.dx i 1 
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-h2du - h3dv + Ydhl + udh2 + vdh3 = 

2 2 1 - a u  (y-1) dp + yudhl - ua dh4 = 
h4 P 

(Vh2 - uh3)dv + - h 2  dP - 
P 

(50) 
2 v  2 = [-h4a - - a K 3  + K4]  dx 

Y 

(i = l , o e ,  n)  (51) 
2 udgi = Jidx - h4a uaidp 

Along gas Mach l i n e s ,  

n 2 1 a (vdu - udv) f 1 a2cota dP = (udy - vdx) [ a2 + - 1 $i] (53) 
P Y ’ i=l 

n 
1 gidCi - ydhl 

1= 1 

1 2 
P h2du + h3dv + - h4 (dP - a do) + 

- 
+ t ana  (vdh2 - udh3) = f t ana  (K2dx - Kldy) f 

n 1 
i 1 tana (udy - vdx) [ K4 + - h4 1 $i] 

a2 P i=l 
(54) 

where e i s  t h e  flow angle and a i s  the  Mach angle.  

and ( 5 4 ) ,  t he  upper s igns  refer  t o  l e f t  running Mach l i n e s  and t h e  lower 

In  Eqs. (52), (53), 
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s igns  t o  r i g h t  running Mach l ines .  

The terms K3, K4 and Ji defined i n  Eqs, (42) ,  (43) and (44) involve 

complicated de r iva t ives  of t h e  funct ions Jli and ai. 

manipulation, these  terms can be expressed i n  terms of t he  fundamental 

thermodynamic p rope r t i e s  of t h e  system i n  the  following form (See Appendix F). 

After some lengthy 

n T CpT n 
K3 = - h4 p 1 aiai - - 1 (h,+i + gi) Wi x 

i=l P i=l 

V !  

r= 1 j = l  j = l  

V '  N n 
K f r  1 v! + (y-1) T ""3 x r= 1 1 (VYr - v '  ir ) [[ j=1 J r  dT 

- [ Krr 1 v'! + (y-1) T - dT 

j= l  (%) j r  - 
n 

j = l  J r  

R ak 3 -  'k 

n CpRiT 
Ji = gi Y - h4 k= 1 1 L ( \ T  - hk)ai + - 

n N ---3 R.T 1 dKfr x 

- k= 1 1 (h44k + gkIwk r= 1 1 ('Lr - { [ ii KfrVlr R dT 

n V !  --- RiT dKrr 1 ; ( p i a )  i 'Yr} 

j = l  R dT j = l  
j 

( i  = l,.., n) (57) 
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In  summary, t h e  c h a r a c t e r i s t i c  system defined by Eqs. (45) through 

(57) can be employed t o  eva lua te  the  gasdynamic p rope r t i e s  and t h e  Lagrange 

m u l t i p l i e r s  throughout region ABC. 

Do Variat ion i n  Nozzle Contour and End Point  

Variat ions of t h e  nozzle contour rl(x) and end poin t  Xc are discussed 
C 

i n  d e t a i l  i n  Appendix io The limits o f  i n t eg ra t ion  of  t he  double i n t e g r a l s  

over region ABC i n  Eq. (18) a r e  func t ions  of t h e  boundaries of t hese  regions.  

Hence, a r b i t r a r y  v a r i a t i o n s  i n  these  limits must be allowed. However, t he  

integrands of t hese  i n t e g r a l s  are i d e n t i c a l l y  zero over t h e  e n t i r e  region 

of i n t e r e s t ,  including the  boundaries of t h e  region. Thus, t h e  v a r i a t i o n s  

a r i s i n g  from t h e  limits of i n t eg ra t ion  of t h e  double i n t e g r a l s  can be a r b i -  

t r a r y  without introducing any new condi t ions i n t o  t h e  problem. 

The contour n(x) and end po in t  Xc a l s o  appear i n  the  l i ne  i n t e g r a l  

along t h e  nozzle wall AC i n  Eq. (18). The contour rl e n t e r s  both d i r e c t l y  

as a f a c t o r  and a l s o  a s  the  argument of a l l  gas p rope r t i e s .  For example, 

Variat ions can be taken i n  a l l  gas p rope r t i e s  due t o  v a r i a t i o n s  i n  rl a t  

f i xed  x. 

s ec t ion  which were taken a t  f ixed  x and y. Thus 

These v a r i a t i o n s  are independent of those taken i n  t h e  previous 

(59) 
a 6u = - { u[x,rl(x)] } 6rl = u 6rl 
aq  Y 

Since t h e  nozzle end po in t  Xc appears i n  t h e  limits of i n t e g r a t i o n  

i n  Eq .  (18),  a v a r i a t i o n  i n  X must a l s o  be taken. Taking the  v a r i a t i o n  
C 
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in the limit of integration at point C in Eq. (18), and allowing 6Xc to 

be arbitrary, gives 

Taking the variation of rl in the line integral in Eq. (18) 

the following result, 

grating by parts the coefficient of 6 n P p  

Substituting the continuity equation, Eq. (11, into Eqo (611, and inte- 

gives the following equation, 

xc 

xA 

Q 

a 
C G P Q C2 (WU) - P P Y  

For arbitrary 6 X  the first term in Eqo (62) must be zero. Eliminating 

C1 from this term by introducing Eq. (601, and recalling from Eq. (29) 

that hl = C2 on the wall AC, gives the following result for hl(Xc) and 

e o  

C2(XC) 0 
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Rearranging t h e  l i n e  i n t e g r a l  i n  Eq. (62) and introducing t h e  system 

momentum equat ions,  Eqs. (2)  and (3),  g ives ,  f o r  a r b i t r a r y  60, 

In t eg ra t ing  Eq. (64), using Eq. (63) t o  eva lua te  t h e  constant  of in tegra-  

t i o n ,  and r e c a l l i n g  from Eq. (29) t h a t  hl  = C 

press ion  for h,[x,n(x)] along AC is  obtained, 

on AC, t he  following ex- 2 

Thus t h e  Lagrange m u l t i p l i e r  hl(x,y) can be evaluated along AC, 

g iv ing  a boundary condi t ion,  i n  terms of t h e  gasdynamic p rope r t i e s  and 

t h e  general  i sope r ime t r i c  cons t r a in t  G(rl,rl', P),  f o r  t he  determination 

of t h e  Lagrange m u l t i p l i e r s  throughout the  flow f i e l d  ABC. 

of t h e  general  i soper imet r ic  cons t r a in t  are presented i n  the  next  s e c t i o n ,  

Examples 

E. Examples of t h e  General I soper imet r ic  Constraint  

The general  i soper imet r ic  cons t r a in t  G ( ~ I , ~ ~ , P )  was def ined i n  Eq. 

(12).  The funct ion G(q,n' ,P) can be chosen a t  the  d i s c r e t i o n  of t h e  

nozzle designer.  Resul ts  f o r  constant  length ,  constant  su r f ace  area, 

constant  a r c  length,  and constant  nozzle weight are presented i n  t h i s  
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sect ion  

For cons tan t  nozzle  length,  Eq. (12) becomes 

S = Axial Length = dx = Constant 1: 
Hence, t h e  general  i soper imet r ic  cons t r a in t  is  given by 

Subs t i t u t ing  Eq. (67) i n t o  Eq. (65) gives the  following r e s u l t  f o r  hl 

along AC, 

For constant  nozzle su r face  a rea ,  Eq. (12) becomes 

C 3 Surface Area - - I (1 + nt2) n dx = Constant 
A 2n S =  

Hence, t h e  genera l  i sope r ime t r i c  cons t r a in t  i s  given by 

S u b s t i t u t i n g  Eq, (70) i n t o  Eq. (65) gives  t h e  following r e s u l t  for h l  

for a cons tan t  su r f ace  area nozzle.  

I: + (Pc-Po) s inec  

ec + 
(Pc-Po) cos2 

cuc 

(71) 
1 d - npu [sec 8 - (0 s i n  e)] dx 
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For constant nozzle wall arc length,  a compromise between constant  

length and constant  sur face  area, Eq. (12) becomes 

C 3 
S = Arc Length = I (1 + n t 2 )  dx = Constant 

A 

In  t h i s  case, t h e  general  i soper imet r ic  cons t r a in t  

For t h i s  case, 

(73) 

becomes 

(74) 

As a f inal  example of t h e  general  i soper imet r ic  cons t r a in t ,  consider  

t h e  case where t h e  weight of the  nozzle is  assumed t o  be governed s o l e l y  

by t h e  mechanical s t r e s s e s  i n  t h e  wall material. 

i s  held constant ,  and t h e  wall stress is  assumed t o  be constant ,  t h e  

If t h e  nozzle weight 

following expression 

aW x Weight 
S =  

4np 

is obtained for the  cons t r a in t  integral . ,  

C 3. 
= I (p  - p0) $(1 + nf2) dx = Constant 

A 

The general  i soper imet r ic  cons t r a in t  f o r  t h i s  case is 

(75) 
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Substituting Eqo (76) into Eqo (65) gives the following result for hlo 

As discussed by Guderley and Amitage,18 Eqo (75) does not represent a 

realistic engineering constraint since the wall pressures may become 

very low, resulting in very thin nozzle walls having very large surface 

areas, 

any of the other three constrannts with a penalty coefficient as dis- 

cussed by Guderley and Amitage, 

This problem e m  be overcome by combining this constraint with 

18 

It is obvious that many more engineering constraints can be postu- 

lated, and the results used to evaluate the Lagrange multiplier hl along 

the nozzle wall, 

is the inclusion of the term uGpCg in Eq, (301, 

pendent of' pressure, this term will always be zero, 

The only other effect on the results developed herein 

FQF constraints inde- 

F, 0 
In this section, the r e su l t s  of the optimization analysis are 

summarized, These results are a s e t  of characteristic and compatibility 

equations for the gasdynamic properties and the Lagrange multipliers 

valid in region ABG, and a set of boundary conditions for these variables 

on the boundaries of region ABC, The geometry is illustrated in Fig 1. 

Along the boundary AB: The gasdynamic properties u, v, P, p p  and C. are 

known from the characteristics solution of the kernel, 
1 
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Along t h e  boundary AC: The following boundary condi t ions were obtained 

along t h e  nozzle wall. 

9 2  
dx u (78) 

where G(n,n',P) is the  general  i soper imet r ic  cons t r a in t  t o  be s p e c i f i e d  8 

by t he  nozzle  designer .  

Along t h e  boundary BC: The following boundary condi t ions were obtained 

along t h e  e x i t  con t ro l  c h a r a c t e r i s t i c  BC. 

W'h l  + (UY' - v)h2 = 0 

2 yhl - a h4 = 0 

g, = 0 * = f l , . . , r  (84) 

Along gas s t reamlines:  The following compat ib i l i ty  equations were found 

along gas s t reamlines  i n  region ABC. 



&- V 
U 

dP - a2dI  p l  = t 1 Jli dx 

pudCi = uidx ( i  = l , . . ,n )  

- h2du - h3dv + ydhl + Udh2 + Vdhj = 

(89) 
= Kldx + K2dy - - 1 h 1 didx + - 1 1 giuidx 

P U  4 PU 

1 1 2  2 
P P 4  

(vh2 - uh3)dv + - h2 dP - - h a u (y-1)dp + yudhl - ua dh4 = 

2 
a 2 K3 + K4 

( i  = l , . . ,n )  (91) 
2 udgi = Jidx - h4a ua.dp 

1 

Along Mach l ines:  The following compat ib i l i ty  equations were obtained 

along Mach l i n e s  i n  region ABC. 

* = t an  (e  f u )  (92) dX 

2 2 v 2  
a (vdu - udv) f a dP = (udy - bdx) [c + 1 .i) (93) P Y P  
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n 
1 gidCi - ydhl T 

i= 1 

1 2 
P 

h2du + h3dv + - h4 (dP - a dp) + 

T tan a(vdh2 - udh3) = f tana(K2dx-Kldy) f 

n 

i= 1 

1 1 * 2 tana (udy - vdx) ( K4 + p h4 

In Eqs. (92) ,  (93) ,  and (94) ,  the upper s igns  refer t o  l e f t  running 

Mach l i n e s  and the lower s igns t o  r ight  running Mach l i n e s .  
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111. APPLICATION OF THE RESULTS 

The application of the results of the present optimization analysis 

is quite involved, A complete set of characteristic and compatibility 

equations fo r  the gasdynamic properties and the Lagrange multipliers 

was obtained, 

Mach lines. 

mining the gas properties and the Lagrange multipliers are Eqs. (85) 

through (94) 

The characteristics are the gas streamlines and the gas 

The characteristic and compatibility equations fo r  deter- 

Initial conditions for the gasdynamic properties can be determined 

from a transonic analysis as discussed by DerZ2 and Craig.23 Initial 

conditions fo r  the Lagrange multipliers hl through h4 and gi at point C 

can be determined from Eqs. (79) , (80) (81) , (83) , and (84). Values 

of these multipliers along AC can be evaluated by employing Eqs. (79), 

(80) , (89) (90) , and (91) starting with the known values at point C. 

As seen from Eq, (84), the Lagrange multipliers gi are all zero along 

BC. Note that Eq, (82) relating hl and hj along the exit control 

characteristic BC is not needed in the determination of the initial 

conditions. 

whether o r  not a given contour is the desired optimum contour. 

This equation can be employed as a check to determine 

A method fo r  the direct application of the results of this analysis 

for  the determination of optimum thrust nozzle contours is not presented. 

However, the results can be applied in a straightforward manner to de- 

termine if a given nozzle contour is the desired optimum contour. For 
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a given contour, t h e  e n t i r e  gasdynamic flow f i e l d  can be determined by 

applying t h e  method of c h a r a c t e r i s t i c s ,  

Lagrange mul t ip l i e r s  along the  wall AC and along t h e  e x i t  c h a r a c t e r i s t i c  

BC can be determined as discussed above. The remainder of the  ana lys i s  

involves the  cons t ruc t ion  of a c h a r a c t e r i s t i c  network as i l l u s t r a t e d  i n  

Fig,  2. 

The i n i t i a l  condi t ions f o r  t he  

S t a r t i n g  near t h e  nozzle e x i t  a t  po in t  1, t h e  i n i t i a l  da t a  known 

along t h e  contour AC can be employed, along with Eq. (94) which is  

v a l i d  along the  two Mach Pines i n t e r s e c t i n g  a t  po in t  2, and Eqs. (81) 

and (83) which are v a l i d  along Mach l i n e  BC,  t o  determine t h e  Lagrange 

m u l t i p l i e r s  h, through h, a t  po in t  2. The values  of  hl through h, and 

gi can be found a t  poin t  3 by applying Eq. (94) along the  two Mach 

l ines  i n t e r s e c t i n g  a t  po in t  3 and Eqs. (89),  (go), and (91) along t h e  

gas s t reaml ine  from po in t  2 t o  3, 

manner as po in t  2 was found. 

t he  Lagrange m u l t i p l i e r s  hl  through h4 and gi can be determined through- 

out  region ABC 

Point 4 can be found i n  the  same 

By continuing t h i s  s t e p  by s t e p  procedure 

During t h e  above procedure, Eq. (82) was not  employed, This re- 

l a t ionsh ip  can thus be u t i l i z e d  as a means of  checking whether or not  

t h e  s e l e c t e d  contour is indeed the  optimum contour,  Thus, along BC, 

t h e  e r r o r  parameter E can be evaluated. 

E = yhl - (UY' - v)h3 (95) 

If E i s  everywhere zero along BC, then t h e  contour satisfies a l l  t he  

requirements of  t h e  v a r i a t i o n a l  problem and i s  indeed the  optimum contour. 



Y 

RIGHT MACH LINE 

LEFT MACH LINE 

x 

FIGURE 2. CHARACTERISTIC NETWORK 
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Otherwise, t he  contour must be a l t e r e d  by a r e l axa t ion  technique t o  

approach t h e  des i r ed  optimum contour, 

GuderPey and Armitage'* present  a r e l axa t ion  technique which was 

appl ied t o  t h e i r  r e s u l t s ,  which are similar t o  t h e  present  r e s u l t s .  

Although the  p re sen t  problem is more involved, a similar r e l axa t ion  

technique can be developed t o  permit t h e  determination of optimum 

t h r u s t  nozzle contours f o r  chemically r eac t ing  gas flows. 
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IV. CONCLUSIONS 

An ana lys i s  was presented f o r  t h e  opt imizat ion of nozzle contours 

The s o l u t i o n  i s  t o  give maximum t h r u s t  f o r  chemically reac t ing  flows. 

sub jec t  t o  t h e  c o n s t r a i n t s  of f ixed  subsonic and t r anson ic  nozzle  

geometry, and a general  i sope r ime t r i c  cons t r a in t  imposed along t h e  wall 

i n  the  supersonic  flow regime, 

of  a set of  p a r t i a l  d i f f e r e n t i a l  equations f o r  t he  Lagrange m u l t i p l i e r s  

of t h e  opt imizat ion problem. A complete s e t  o f  c h a r a c t e r i s t i c  and com- 

p a t i b i l i t y  equat ions f o r  t he  gasdynamic p rope r t i e s  and t h e  Lagrange 

m u l t i p l i e r s  was obtained. 

p l i e r s  were obtained from t h e  opt imizat ion ana lys i s  i n  the  form of a 

set o f  a lgeb ra i c  equat ions v a l i d  along the  boundaries of t h e  flow f i e l d .  

A method was presented f o r  employing t h e  r e s u l t s  t o  determine whether 

or not  a given nozzle contour i s  a c t u a l l y  an optimum contour. By em- 

ploying a r e l axa t ion  technique i n  conjunction with t h e  aforementioned 

method, a procedure can be developed with which the  des i red  optimum 

contour can be obtained. The app l i ca t ion  of such a technique would 

permit t h e  rocket  nozzle designer  t o  obta in  t h e  b e s t  poss ib l e  perform- 

ance sub jec t  t o  t h e  c o n s t r a i n t s  of each ind iv idua l  app l i ca t ion .  

The so lu t ion  was obtained i n  the  form 

Boundary condi t ions f o r  t he  Lagrange mult i -  
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V. NOMENCLATURE 

English Symbols 

a 

i a 

‘i 

C 

C 
P 

P i  

cV 

‘vi 

‘1 

c2 
E 

F 

g i  

G 

hi 

hy 

h 

Ji 

j 

j 
K 

Kfr 

Krr 

f rozen speed of sound 

funct ion of s p e c i f i c  hea t  

spec ies  mass f r a c t i o n  

de f in  d by Eq. (24) 

cons tan t  pressure  s p e c i f i c  hea t  

constant  pressure  s p e c i f i c  hea t  of  spec ies  i 

constant volume s p e c i f i c  heat 

constant  volume s p e c i f i c  hea t  of spec ies  i 

Lagrange m u l t i p l i e r  

Lagrange m u l t i p l i e r  

e r r o r  parameter def ined by Eq. (95) 

t h r u s t  parameter t o  be maximized, def ined by Eq. (11) 

Lagrange m u l t i p l i e r s  ( i - l , o o o , n )  

general  i sope r ime t r i c  cons t r a in t  def ined by Eq. (12) 

enthalpy of spec ie s  i 

hea t  o f  formation of spec ies  i 

Lagrange m u l t i p l i e r s  ( j - l , e o e , 4 )  

nonhomogeneous terms i n  Eqs. (39) 

nonhomogeneous terms i n  Eqs. (35) through (38) 

forward r eac t ion  rate constant  of reac t ion  r 

reverse  r eac t ion  rate constant  of  r eac t ion  r 
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j 
L 

Mi 
n 

N 

P 

R 

Ri 

S 

t 

T 

U 

V 

W 

'i 

xC 

X 

Y 

p a r t i a l  d i f f e r e n t i a l  equation opera tor  def ined by Eq. (14) 

p a r t i a l  d i f f e r e n t i a l  equation opera tor  def ined by Eq. (15) 

number of chemical spec ies  i 

number of chemical reac t ions  r 

pres  su re  

amb i en t p res  sure  

gas constant  

gas constant  of spec ies  i 

general  i sope r ime t r i c  cons t r a in t  i n t e g r a l  def ined by Eq. (12) 

time 

temperature 

x-d i rec t ion  ve loc i ty  component 

y-d i rec t ion  ve loc i ty  component 

molecular weight 

molecular weight of spec ies  i 

coordinate  along nozzle a x i s  

x coordinate  of nozzle e x i t  po in t  C 

coordinate  normal t o  nozzle  ax i s  

Greek Symbols 

a 

Y s p e c i f i c  hea t  ra t  i o  

Mach angle ,  a = sin-'(l/M) 

6( 1 first v a r i a t i o n  of a quant i ty  

n(x) optimized nozzle  contour 

e 

V !  s to ich iometr ic  c o e f f i c i e n t s  of r eac t an t s  

flow angle ,  e = tan- l (v/u)  

ir  
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V!' s to ich iometr ic  c o e f f i c i e n t s  of products 

P dens i ty  

i r  

dens i ty  of nozzle  wall material 

chemical spec ies  source func t ion  

pw 

i a 

a stress of  nozzle  wall material 

Jli 

W 

func t ion  of thermodynamic p rope r t i e s  defined by Eq. (7) 

Subscr ip ts  

C 

i 

j 

k 

r 

Other 

property evaluated a t  nozzle e x i t  po in t  C 

index denoting spec ies  i (i=l, ..., n) 

index denoting spec ie s  j ( j = l , .  . . ,n) 

index denoting spec ies  k (k=l ,  ..., n) 

index denoting r eac t ion  r (1-1, ..., N) 

t o t a l  de r iva t ive  with respec t  t o  x 

p a r t i a l  d e r i v a t i v e  with respec t  t o  x 

p a r t i a l  de r iva t ive  with respec t  t o  y 

p a r t i a l  d e r i v a t i v e  with respect  t o  x 

p a r t i a l  d e r i v a t i v e  with respec t  t o  y 

p a r t i a l  d e r i v a t i v e  with respec t  t o  + (@=n,n', o r  P) 

s lope  of  a l i n e  i n  x-y plane 
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APPENDIX A 

GOVERNING EQUATIONS FOR CHEMICALLY REACTING FLOWS 

The governing equations for the axisymmetric flow of a chemically 

reacting gas in the absence of transport phenomena and body forces are 

given in references 21, 22 and 23. These equations are the usual equations 

for conservation of mass, momentum, and energy, the thermal equation of 

state, and the caloric equation of state. Generally, these equations are 

presented in the natural coordinate system consisting of an axis along a 

streamline and an axis normal to the streamline. In that coordinate sys- 

tem, (2+n) of the (4+n) governing partial differential equations reduce 

to total differential equations along a streamline, thus leaving only two 

partial differential equations to be solved by the method of characteristics. 

In the present optimization analysis, the aforementioned simplification is 

not advantageous, since the governing equations must be solved simultane- 

ously with the set of partial differential equations governing the Lagrange 

multipliers of the optimization problem. The form of the governing equa- 

tions employed in the present analysis is developed in the following dis- 

cus sion 

From reference (22), the following equations are obtained. 

DP - + pdiv v = 0 Dt 
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DiT p - + grad P = 0 D t  

Dh DP 
P F - E = O  

DC - p -= a D t  i 

n 

i= 1 
P = pT 1 CiRi 

n 
h = 1 Cihi 

i= 1 

( i = l , . . , n )  

(i=l,. . ,n) 

(A-4) 

(A-5) 

(A- 7) 

When expanded i n t o  a c y l i n d r i c a l  coordinate  system, Eqs. (A-1) through 

(A-4) r e s u l t  i n  (4+n) p a r t i a l  d i f f e r e n t i a l  equations f o r  t h e  (S+n) v a r i -  

ab les  u, v, P,  p ,  h and Ci,  

t o  t h i s  system, t h e  enthalpy h appearing i n  Eq. (A-3) w i l l  be e l iminated 

by using Eqs. (A-S), (A-6) ,  and (A-7).  

In  order  t o  apply the  method of c h a r a c t e r i s t i c s  

Consider t h e  term hx a r i s i n g  from 

Eq. (A-3) .  

n n 

From Eq. (A-7) ,  assuming constant  s p e c i f i c  hea t s ,  

(hi)x = C .T 
P l  x (A-9) 



From Eq. (A-S), 

n T T Tx = - P - - p - - 1 Ri(Ci)x p x  P X  Ri=l 
(A-10) 

Substituting Eqs. (A-9) and (A-10) into Eq. (A-8) gives the following 

result . 
C T  C T  n C TR. 

h = J- - J- + (hi - v) (C.) 1 x  i= 1 x P px p px 

In a similar manner, h is given by 
. Y  

C T  C T  n C TR. 
h = P P  - p p  + 1 (hi - v) (C.) Y P Y  P Y p 1  l Y  

(A- 11) 

(A- 12) 

Substituting Eqs. (A-11) and (A-12) into the energy equation, Eq. (A-3), 

gives the following result. 

C T  C T  n C TR. DCi DP 
&E-&%+ 1 (hi-+)F---=O 

P Dt i= 1 P Dt p Dt 

Multiplying Eq. (A-13) by (y-1)p yields 

n C TR. DCi 
1 
i- 1 

E - a2 2 + (y-1) Dt Dt (hi - v ) p  - = 0 Dt 

(A- 13) 

(A-14) 

Substituting the species continuity equation, Eq. (A-4), into Eq. (A-14) 

yields 

(A- 15) 
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where the  funct ion Jli is defined as follows. 

n n 

i=l i=l i (A- 16) 

In summary, t h e  governing d i f f e r e n t i a l  equations f o r  t h e  flow of a 

chemically r eac t ing  gas are Eqs. (A-1), ( A - 2 ) ,  (A-15), and (A-4). When 

expanded i n t o  a c y l i n d r i c a l  coordinate  system, these  equations have t h e  

following form. 

P V  + pvy + up, + vp = - - 
p’X Y Y 

(A-17) 

(A-18) puux + P v u y  + P, = 0 

(A- 19) puv, + pvv + p = 0 
Y Y  

n 

i-1 

2 2 
upx + VP - a up, - a vp = C Jli Y 

(A-20) 

PU(CiIx + PvKi)y = a i  ( i = l , . o , n )  (A-21) 
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APPENDIX B 

ANALYSIS OF VARIATIONS OF GAS PROPERTIES 

In t h i s  s ec t ion ,  va r i a t ions  w i l l  be taken i n  the  gas p rope r t i e s  

u(x,y) ,  v(x,y) ,  P(x,y),  p(x,y) and Ci(x,y) ( i - l , . . ,  n ) ,  along the  contour 

~ ( x )  and throughout t he  flow f i e l d  ABC. 

p rope r t i e s  which appear i n  d i f f e r e n t i a l  form, t h e  following r e l a t i o n s h i p  

w i l l  be employed. 

In  order  t o  take v a r i a t i o n s  i n  

Employing t h e  above r e l a t i o n s h i p  and taking v a r i a t i o n s  of a l l  gas pro- 

p e r t i e s  i n  Eq. (18) y i e l d s  t h e  following r e s u l t .  

\: [qn'6P + C1Gp6P + C2(x)np(q'6u - 6v)]dx + 

+ h3(x,y) b(puvx)  + 6(pvv ) + 2 6P] + 
Y a Y  

n I- 
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From here on, t h e  Lems C,(x), h l (x ,y ) r  e t c ,  w i l l  be  denoted by C2, hl ,  

e t c ,  i n  order  t o  s impl i fy  the  appearance of  t he  equat ions,  

The sur face  i n t e g r a l  0ver the  region ABC can be s impl i f ied  by apply- 

ing  Green's theorem f o r  t he  plane which can be s t a t e d  as follows, 

M(x,y), N[x,y), 3Ml'ay, and aN/ax a r e  continuous, single-valued func t ions  

over a closed region R bounded by the  closed curve C, then 

If 

The double i n t e g r a l  i s  taken over t he  given region R ,  and the  curve C 

is descr ibed i n  a d i r e c t i o n  such t h a t  t h e  region R is t o  t h e  l e f t  when 

t r a v e l i n g  i n  a p o s i t i v e  d i r e c t i o n  around t h e  curve,  

t h e  app l i ca t ion  of Green$s theorem t o  Eqo (B-2), t he  i n t e g r a l  over t h e  

region ABC, i n  Eq, (B-2) can be considered t o  be represented by t h e  follow- 

ing expression,  

In order  t o  s impl i fy  

where 

and the  remaining t e r n s  follow i n  sequence from Eqo (B-2). Green's 

theorem can then be appl ied t o  each of the  terms i n  Eq. (B-4) as follows. 

Consider rhe  t e r n s  G and H ,  
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In Eqs. (B-7) and (B-9), let  

Adding Eqs. (B-7) and (B-9), and applying Green's theorem gives  

Consider the  terms J and K .  

a 
J = I I ABC 

{h26(pu)ux + h2pu ax 6u)dxdy 

(B- 10) 

(B-11) 

(B- 12) 

(B- 13) 

(B-14) 
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Note t h a t  

a a - ax (h2pu6u) = h2pu 5 6~ + 6u(hZPu)x 

Subs t i t u t ing  Eq. (B-15) i n t o  Eq. (B-14) gives  

Performing analogous operat ions on the  term K gives  

. .  

(B-15) 

(B-16) 

(B- 17) 

In  Eqs. (B-16) and (B-17) let  

M = - h2Pv6u (B-18) 

N = h2pu6u (B- 19) 

Adding Eqs. (B-16) and (B-17), and applying Green's theorem gives  

Trea t ing  L and M i n  t he  same manner i n  which J and K were modified 

r e s u l t s  i n  t h e  following expression. 
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+ I I ABC 
{h36(pu)vx + h36(pv)v - G ~ ( h ~ p u ) ~  - 6v(h3pv) Y )dxdy 0 - 2 1 )  

Y 

Performing similar operat ions on P and Q y i e l d s  

(B-22) 

Combining R and S i n  t he  same manner gives  

= {I:+ I:+ [E] [- h4v6Pdx + h4u6Pdy I + 

+ I I ABC 
{h46uPx + h46vP - 6P(h4u). - 6P(h 4 Y  v) )dxdy (8-23) 

Y 

Performing similar operat ions on T and U r e s u l t s  i n  

(T+U) = {I:+ I:+ I:} [h4a2v6pdx - h4a 2 l  udpdy + 

(B-24) 

Combining X and Y i n  t h e  same manner gives 
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(x+Y) = I:+ If+ J$ {iIl [- gipv6Cidx + 1 

The terms V and Z are non-homogeneous terms not  involving p a r t i a l  

de r iva t ives .  A t  t h i s  po in t ,  t hese  terms w i l l  be t r e a t e d  i n  func t iona l  

form without spec i fy ing  t h e  exact  form of t h e  funct ion.  Thus, 

V = I I { -  h4 6$i}dxdy 
ABC i= 1 

(B- 26) 

The term Jli i s  assumed t o  be  a funct ion of P, p ,  and Ck only. Thus, 

(8-27) 

In a similar manner, t h e  following r e s u l t  is obtained f o r  Z. 

(B-28) 

2 The term 6a appears i n  Eq. (B-24). This term can be el iminated 
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I 

i 
by consider ing t h e  equation f o r  t h e  frozen speed of sound i n  a p e r f e c t  gas. 

3 3 3 3 

6P 
aL aL aL aL 6CV + - 6P - - 

cV P P 
6a = F & c p  - - 

P 

n 

i= 1 
cv = cvici 

n 

i= 1 
6CV = 1 CVi6Ci 

(B-29) 

(B- 30) 

(B-31) 

(B- 32) 

(B-33) 

Subs t i t u t ing  Eqs. (B-31) and (6-33) i n t o  Eq. (B-29) gives the  following 

r e s u l t  f o r  6a . 2 

t o  x 

where 

(B-34) 

(B-35) 

Equation (B-24) a l s o  conta ins  p a r t i a l  de r iva t ives  of a2 with r e spec t  

and y. These de r iva t ives  can be  obtained i n  the  same manner as Eq. 



52 

(B-34) was developed. Thus, 

n 

i=l 

2 2 a 2 2 a  ax = p Px - - p, + a c a i q x  
P 

n 

i=l 

2 2 a 2 2 a  ay = p Py - Py + a 1 ai(Ci)y 

Note t h a t  i n  region ABC 

(B-36) 

(B-37) 

(B- 38) 

(B-39) 

Subs t i t u t ing  a l l  of t h e  above r e s u l t s  i n t o  Eq. (B-2) y i e l d s  t h e  

Note t h a t  t he  d i r e c t i o n  of t h e  l ine  i n t e g r a l s  following expression,  

has been reversed by interchanging t h e  limits of i n t e g r a t i o n  and mult iply-  

i ng  t h e  integrands by (-l), r e s u l t i n g  i n  no n e t  change i n  the  values  of 

t h e  i n t e g r a l s .  

C 

A 
I { n n t 6 P  + C1Gp6P + C2rw(nt6u - 6vj) dx + 1 
+ { 1:- JL- 1:) {hlyp6v + hlyvdp + h2pv6u + h3pv6v + 

(B-40) 

n 

i=l 

+ h36P + h4v6P - h4a 2 v6p + pv 1 

- {I:- 1:- j:}{hlyp6u + hlyu6p + h 2 pu6u + h3pu6v + 
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n 

i-1 

2 
+ h26P + h4u6P - h4a u6p + pu 1 

I n 
+ h4Px - h4a P, + P 1 gi(CiIx 6u + 

i=l 

2 

1 n 
1 gi(Ci)y 6v + 

2 

4 Y  Y i= 1 
+ h P - h4a p + p 

4 

(B-40) 

2 a 
+ [- h4 p (UP, + VP Y 1 - (h2), - (h3Iy - (h4u), - (h4v)y - 

n n 

i=l i= 1 

+ [- yu(hl), - yv(hl)y + h2uux + h VU + h 3 ~ v x  + h VV + 

2 Y  3 Y  

+ aL(h4u)X + aL(h4vly + 

+ h4ua2 { 1 
ai(Ci), + y px - p P, 

i=l 

1 
P Y  P Y  1 ai(CiIy + - P - - p + h va2 { 

i=l 4 

n n 

n n 
- h4 c +ip - c 8 f i p  ]6P + 

i= 1 i=l 
(B-40) 

h 
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f 
(B- 40) I + [- h4a 2 ai(upx + VP - (giPU)x - (giPVly - Y i= 1 

Consider first the  l i n e  i n t e g r a l s  appearing i n  Eq. (B-40). Note 

t h a t  along AC 

(B-41) 

Subs t i t u t ing  Eq. (B-41) i n t o  Eq. (B-40), and not ing t h a t  t h e  l i n e  in-  

t e g r a l s  must equal zero independently of  t h e  sur face  i n t e g r a l s  f o r  

a r b i t r a r y  v a r i a t i o n s  i n  t h e  gas p rope r t i e s ,  t h e  following equations are 

obtained.  

A [[C2npnt + h2pv - hZpun' - h ln~n t ]6u  + 

+ [nn' + hg + h4v - h2nt - h4unt + ClGp]6P + 

1 + [- h4a 2 v + hlnv + h4a 2 un' - hlnun' 6P 

(B-42) 
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[I;+ - h2PUdY - hlYPdY]6U + 

+ [h3pvdx - h3pudy - hlypdx]6v + 

+ [h3dx - h2dy + h4vdx - h4udy 6P + J 
+ [- h4a 2 vdx + hlyvdx + h4a 2 udy - hlyudy]6p + 

(B-43) 

Since the  i n t e g r a l  i n  Eq. (B-42) must equal zero for  a r b i t r a r y  

values  of  6u, 6v, 6P, 6 p ,  and 6Ci, t h e  c o e f f i c i e n t s  of  t hese  v a r i a t i o n s  

must equal  zero i d e n t i c a l l y ,  r e s u l t i n g  i n  t h e  following equat ions re- 

spec t ive ly  which must be  v a l i d  along AC. 

(B-44) 

(B-45) 

uh3 - Vh2 + VQ + uCIGp = 0 (B-46) 

o = o  (B-47) 

o = o  (B-48) 

Thus, t h e  two independent r e l a t ionsh ips  given by Eqs. (B-44) and (B-46) 
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must apply along the  nozzle contour AC, 

Since no v a r i a t i o n s  i n  gas p rope r t i e s  are allowed along AB, t h e  l i n e  

i n t e g r a l  along t h a t  curve w i l l  a l ready be zero and no new condi t ions r e s u l t .  

However, t h e  v a r i a t i o n s  along BC a r e  a r b i t r a r y ,  thus requi r ing  t h e  co- 

e f f i c i e n t s  of the  v a r i a t i o n s  t o  be zero,  r e s u l t i n g  i n  the  following equa- 

t i o n s  respec t ive ly  which must be v a l i d  along BC. 

(B-50) 

hgdx - h2dy Q h vdx - h4jdy = 0 4 (B-51) 

2 2 - h4a vdx + hlyvdx + h a udy - hlyudy = 0 4 (B-52) 

gi(Udy - ~ d ~ 9  = 0 ( i = l @  ,n9 (B-53) 

Solving these  equations simutaneously gives  t h e  following equiva len t  

r e l a t i o n s h i p s ,  

2 yhl - a h4 0 

2 yhl - a h4 = 0 

(8-54) 

(B-55) 

(B-56) 

(B-57) 
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gi(uy' - v) = 0 ( i = l ,  e ,n) (B-58) 

Thus, t h e  fou r  independent r e l a t ionsh ips  expressed by Eqs. (B-54), (B-55), 

(B-56), and (B-58) must apply along t h e  lef t  running Mach l i n e  BC. 

Returning t o  t h e  su r face  i n t e g r a l  appearing i n  Eq. (B-40), t h e  var i -  

a t i o n s  i n  gas p rope r t i e s  must be a r b i t r a r y  over t h e  region of i n t eg ra -  

t i o n .  Hence, the  c o e f f i c i e n t s  of t he  va r i a t ions  must be i d e n t i c a l l y  zero, 

r e s u l t i n g  i n  t h e  following p a r t i a l  d i f f e r e n t i a l  equat ions.  

n n 

i= 1 i= 1 
- h4 1 Jlip - 1 yip = 0 

(B-59) 

(B- 60)  

(B-61) 

h2(uux + vu ) + h3(uvx + w ) + h4a 2 (ux + v ) + 
Y Y Y 

i= 1 i= 1 
n 

(B-62) 
i=l 
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2 
gi[(pu)x + (pv) ] + h4a ai(uPx + VP 1 + pu(gi)x + PV(gi)y + Y Y 

(B-63) 

Equations (B-59) and (B-60) can be s impl i f i ed  by employing t h e  gas 

cont inui ty  equation, Eq. (1) .  

Thus, Eqs. (B-59) and (B-60), after mul t ip l i ca t ion  by ( - l / p ) ,  become 

V K1 = h2 7 

1 2 - h u - h v - h4 p (Py - a py) + y(hl)y + u(h3)x + 
2 Y  3 Y  

V 

37 K2 = h 

(B-65) 

(B- 66) 

(B-67) 

(B-68) 
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Equation (B-61) can be written in the following form. 

2 a h u + h v + h4 p (UP, + VP + (h21x + (h31y + 4 x  4 y  Y 

+ ~ ( h ~ ) ~  + v(h41y = K3 (B-69) 

(B-70) 

B 
Next, to simplify Eq. (k-62), recall the system momentum equations, 

Eqs. (2) and (3) 

(uux + vu ) = - ;; 1 Px (8-71) 
Y 

(B- 72) 1 (uvx + vv ) = - - P Y P Y  

2 Multipling Eq. (B-69) by - a , adding the result to Eq. (B-62), substitut- 

ing Eqs. (B-71) and (B-72), introducing the system energy equation, Eq. (4 ) ,  

and the species continuity equation, Eq. (S), the following result is ob- 

tained, 

(B-73) h2 h3 2 2 - Px + a Py + yu(hlIx + yv(hlIy + a (h2Ix + a (h3ly = K4 
P 

2 + - 1 <h4a ai + gi)ai 
n 1 

P i=1 
(B- 74) 
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Subs t i tu t ing  the  cont inui ty  equation, Eq. ( l ) ,  i n t o  Eq. (B-63) y ie lds  

the  following r e s u l t .  

h4a 2 a i ( w x  + VP 1 + w ( g i I x  + pv(giIy = Ji (i=l,.. ,n) (B-75) 
Y 

n n 

k= 1 k= 1 
J i  - - gi pv - h4 ('k)ci - gk('k)Ci (i=l,.. ,n) (B- 76) 

Equations (1) through ( 5 )  , together  with Eqs. (B-65) , (B-67) , (B-69) , 
(B-73) and (B-75), c o n s t i t u t e  a system of (8+2n) equations f o r  determining 

t h e  (8+2n) var iab les  u, v. P, p ,  Ci, hl, h2, h3, h4, and gi. 

Appendix E, these  equations form a system of quasklinear,  non-homogeneous, 

first order  partial  d i f f e r e n t i a l  equations of t h e  hyperbolic type. 

t h e  system can be replaced by an equivalent  system of  c h a r a c t e r i s t i c  and 

compatibi l i ty  equations,  which are t o t a l  d i f f e r e n t i a l  equations of t h e  

first order ,  

E. Along gas s t reamlines ,  

As shown i n  

Thus, 

The following c h a r a c t e r i s t i c  system was obtained i n  Appendix 

9 2  
dx u 

pudu + pVdV + dP = 0 

n 2 1 dP - a dp = - 1 Jli dx 
i=1 

pudCi = u.dx 
1 

( i = l , .  . ,n) 

(B-77) 

(B- 78) 

(B-79) 

(B- 80) 
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- h2du * h3dv t Ydhl + udh2 + Vdh3 = 

n 1 n = Kldx + K2dY +';;I; 1 h4 1 qidx + - 1 g i a i  dx 
i= 1 Pu i=l  

2 2 
(vh2 - uh3)dV + - 1 h2 dP - h4 p a u  (y-1) dp + yudhl - ua dh4 = 

P 

(B-81) 

= [- h4a2 1 - a 
Y 

udgi = Jidx - h4a 2 uaidp 

(B- 82) 

( i = l , .  . 8n) (B- 83) 

Along gas Mach l i n e s ,  

* = tan (e *a )  (B- 84) dx 

[a2 t 1 ] (B-85) 2 a (vdu - udv) f 1 a2cota  dP = (udy - vdx) I, +i 
P Y P i=l  

n 
1 gidCi - ydhl 5 

i= 1 

1 2 
P 

h2du + hjdv + - h4 (dP - a dp) + 

tana (vdh2 - udh3) = f tana (K2dx - Kldy) * 

n 
(B- 86)  

where 6 i s  t h e  flow angle  and a i s  t h e  Mach angle. 

and (8-86) the  upper s igns  refer t o  l e f t  running Mach l ines and t h e  lower 

s igns  t o  r i g h t  running Mach l ines .  Note t h a t  Eqs. (B-85) and (B-86) are 

a c t u a l l y  two equations each when appl ied along the  two Mach l i n e s ,  

In  Eqs. (B-84), (B-85), 

In summary, Eqs. (B-77) through (B-86) can be employed t o  eva lua te  
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the parameters x, y,  u, v, P ,  p ,  Ci, h l ,  h2, hg, h4 and gi throughout 

region ABC. 



63 

APPENDIX C 

ANALYSIS OF VARIATION OF NOZZLE CONTOUR AND END POINT 

In the consideration of variations of the nozzle contour n(x) and 

nozzle end point Xcg only the line integral along AC in Eq. (18) con- 

tributes. The contour n enters this line integral in two ways, directly 

as a factor in the integrand, and as the value of the argument y of all 

gas properties, Thus, 

and similarly for the other properties, Variations in the gas properties 

holding x, y and n fixed were taken in Appendix B, 

variations in the gas properties will be taken holding x fixed while 

variations are allowed in n. 

taken in Appendix B o  Thus, along AC, the following variations in gas 

properties are allowable, 

In this Appendix, 

These variations are independent of those 

In an analogous manner, one obtains 

bv = v 6s 
Y 

6P = P 6rl 
Y 

for x f ixed 
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Taking the variation of n along AC in Eq. (18) results in two effects. 

The first arises from variations in n under the integral sign, and the 

second results from the variation of the limits of integration. Since 

these effects are independent, they can be considered one at a time. 

First, consider the variation of the limits of integration. At point 

A, no variations are allowed, 

However, a variation in Xco 6XCp is allowable. 

along AC, the following result is obtained, 

Hence, no additional conditions are found. 

Noting that (un8-v) = 0 

[(P-Po)nn' + CiG(Q,n 0 P)], 6XC = 0 (C-7) 
C 

Since 6Xc is arbitrary, the term in square 

Theref ore , 
brackets must equal zero. 

Next, consider the variation of rl under the integral sign. 

1 

(C-9) 

(C-10) 

Substituting Eqs, (C-3) through (e-6) into Eq. (C-10) gives 

(C-11) 
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From the continuity equation, Eq. (1). 

- (rlPVIy = (rlPu)x (C-12) 

Thus the fifth term under the integral in Eq. (C-11) can be written as 

However, along AC, 

a + rl' - d a  
= = a x  aY 

Equation (C-13) thus becomes 

(C-14) 

d (C-15) c* (rlPU1 

Integration by parts can be applied to the terms involving 6rl' in 

Eq. (C-9). The following result, after introducing Eq. (C-E), is obtained. 

(C-16) 

In the terms arising from the limits of the integration by parts, the 

variation in 6rl at XA is zero since the flow must match the flow upstream 

of point A at point A. 

ing result is obtained. 

However, 60 at Xc is not fixed. Hence, the follow- 

(C-17) 
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Substituting Eq. (C-8) into Eqo (C-17) and solving for C2(Xc) gives 

1 C ( X ) = -  (pc-pO) 11 - G(Xc) 
11; GnI (XC) 

cue 2 c  (C-18) 

Returning to the line integral in Eq. (C-16), the following simplifi- 

cations can be made. 

dP 
n = =  - rl px 

ap 
aY nn' - - 

(C-19) 

(C-20) 

From the system momentum equations, Eqs. (2) and (3 ) ,  Px and P 

expressed as follows, 

can be 
Y 

V du 
U Y  = - pu(ux 9 - u )  = - PU 

V dv P = - pu(vx + - v  ) = - pu 
Y U Y  

(C-21) 

(C-22) 

Setting the coefficient of 60 in Eq, (C-16) equal to zero, and substituting 

Eqs. (C-19), (C-20), (C-21) and (C-22) into Eq. (C-16) gives the following 

result 

(C-23) 

Integrating Eq. (C-23) between the limits x and Xc, noting that the positive 
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d i r e c t i o n  is from C t o  A, g ives  

Evaluating Eq. (C-24) a t  poin t  

i n  Eq. (C-18) g ives  t h e  follow 

C and equating t h e  r e s u l t  t o  t h e  r e s u l t  found 

ng equation f o r  C 3' 

(C-25) 

Subs t i t u t ing  Eq, (C-25) i n t o  Eq. (C-24) y ie lds  the  f i n a l  r e s u l t  f o r  C2(x). 

(C-26) 

Thus, C,(x) can be determined along AC once t h e  flow p rope r t i e s  are known 

a t  poin t  C, 

In Appendix B, it was shown t h a t  along AC, 

(C-27) 

Hence, t h e  Lagrange m u l t i p l i e r  hl(x,y) can be evaluated along AC, g iving 

a boundary condi t ion f o r  t he  determination of t he  Lagrange m u l t i p l i e r s  

throughout t h e  flow f i e l d ,  
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APPENDIX D 

METHOD OF CHARACTERISTICS 

In many engineering problems the  governing d i f f e r e n t i a l  equations 

are systems of quas i - l i nea r ,  non-homogeneous, p a r t i a l  d i f f e r e n t i a l  

equations of  t h e  f irst  order  f o r  funct ions of  two independent va r i ab le s .  

A quas i - l i nea r  p a r t i a l  d i f f e r e n t i a l  equation o f  t h e  first order  i s  de- 

f ined as one t h a t  i s  non-l inear  i n  the  dependent va r i ab le s ,  but  l i n e a r  

i n  t h e  first p a r t i a l  de r iva t ives  o f  t h e  dependent va r i ab le s .  

system of  n equations can be  w r i t t e n  as* 

Such a 

= o  - auj a u j  
i 1,. . . ,n Li - aij  ax + b i j  ay + c 

where t h e  supe r sc r ip t  j i d e n t i f i e s  a p a r t i c u l a r  dependent va r i ab le ,  and 

t h e  c o e f f i c i e n t s  a i j ,  b i j ,  and c .  depend on x,  y ,  u ,. .. ,U . 
panded, t h i s  system o f  equations becomes 

1 j When ex- 
1 

(D-2) 

1 2 un + b u1 + b u 2 +...+ b un + c = 0 
2n x 21  y 22 y 2n y 2 L2 = a21ux + a22ux+. . .+a 

J 2 2 
Ln = a u1 + a u +...+a un + b u1 + b u +...+ b un + c = 0 

*In accordance with accepted convention, when an index i s  repeated,  

n l  x n2 x nn x n l  y n2 y nn y n 

summation is  c a r r i e d  out  with r e spec t  t o  t h a t  index. 
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When such a system of  equations i s  hyperbol ic ,  t h e  method of charac- 

t e r i s t i c s  can be employed t o  obta in  t h e  des i red  so lu t ion .  

t h e  p re sen ta t ion ,  the  theory w i l l  f i rst  be developed f o r  a system of two 

equat ions,  and those  r e s u l t s  w i l l  then be extended t o  systems of  n equat ions.  

To s impl i fy  

Consider a l i n e a r  combination of the  f irst  order  p a r t i a l  de r iva t ives  

of a funct ion f ( x , y ) .  

( D -  3) afx + bf  + c = o 
Y 

In  Eq. ( D - 3 ) ,  a,  b, and c may be funct ions of f ,  x, and y. 

( D - 3 )  may be rearranged a s  follows 

Equation 

b 
a Y  

a ( f x  + - f )  + c = o 

If f (x ,y)  i s  r e s t r i c t e d  t o  be a continuous funct ion having continuous 

d e r i v a t i v e s ,  t h e  following r e l a t i o n s h i p  must a l s o  be va l id .  

df = fxdx + f dy 
Y 

Equation ( D - 5 )  may be r ewr i t t en  as  follows 

dx df  . * f )  - =  ( fx  dx y 

Comparing Eqs. ( D - 4 )  and ( D - 6 ) ,  it is seen t h a t  Eq. ( D - 4 )  may be wr i t t en  as 

a df  + c dx = 0 ( D - 7 )  
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i f  t h e  following r e l a t i o n s h i p  i s  forced t o  apply,  

- = -  dY b 
dx a 

Equation ( D - 8 )  is t h e  equation of a curve i n  t h e  (x,y) plane i f  (b/a) is  

a real funct ion,  Such a curve, i f  it e x i s t s ,  is  c a l l e d  a c h a r a c t e r i s t i c  

curve. 

e x i s t  a r e  termed hyperbol ic  equations.  

t he  funct ion f (x ,y)  can be evaluated by applying Eqo ( D - 7 ) ,  which is  a 

t o t a l  d i f f e r e n t i a l  equation r e l a t i n g  df  t o  dx along t h e  c h a r a c t e r i s t i c  

curve. An equation such as Eq. (D-7) i s  c a l l e d  a compat ib i l i ty  equation. 

Thus, t he  o r i g i n a l  p a r t i a l  d i f f e r e n t i a l  equation spec i f i ed  by Eq. ( D - 3 )  

can be replaced by the  equivalent  system of a c h a r a c t e r i s t i c  curve along 

which a compat ib i l i ty  equation i s  va l id .  

o f  t he  method of c h a r a c t e r i s t i c s  

P a r t i a l  d i f f e r e n t i a l  equations f o r  which c h a r a c t e r i s t i c  curves 

Along the  c h a r a c t e r i s t i c  curve, 

Such a replacement is the  b a s i s  

Consider now a system of two equations f o r  t he  two dependent va r i a -  

b l e s  u(x,y) and v(x ,y>,  Thus 

- 
L1 - a l lUx + bl ruy  + a12vx 

- 
L2 - a21Ux + b21Uy + a22vx 

+ b12vy 

+ b22Vy 

+ c  = o  1 

+ c 2 = o  

I t  is  des i red  t o  f i n d  an equiva e n t  sys-em of  c h a r a c t e r i s t i c  curves and 

compat ib i l i ty  equations with which Eq. ( D - 9 )  can be replaced. Since both 

equations i n  Eq. (D-9) are coupled through the  dependent va r i ab le s  u(x,y) 

and v(x,y) , both equations must be considered simultaneously.  This can 
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be done by forming t h e  d i f f e r e n t i a l  opera tor  

L = U l  L1 + a2 L2 (D- 10) 

where ul  and u 

Eq. (D-10) and pu t t ing  the  r e s u l t  i n t o  t h e  form of Eq. (D-4) y i e l d s  t h e  

are a r b i t r a r y  func t ions .  Subs t i t u t ing  Eq. (D-9) i n t o  2 

following expression. 

(D- 

Equation (D-11) becomes 

i f  the following equations are v a l i d ,  where X = (dy/dx). 

X r  bllul + b21u2 (D-13) ,, + 
allul a2 l U 2  

b u + bZ2u2 12 1 A =  
a12al  + a22u2 

Equation (D-13) can be rearranged with u1 and u2 considered as t h e  un- 

known vari ab les . 
(D- 14) 
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For E q .  (D-14) t o  have any so lu t ion  f o r  u1 and a2, other  than the  t r i v i a l  

so lu t ion  u 

must be zero,  Thus, 

= a2 = 0 ,  t he  determinant of  t h e  c o e f f i c i e n t s  of  u l  and u2 1 

(D- 15) 

Expanding the  determinant of Eqc (D-15) r e s u l t s  i n  an equation of  t h e  

following form f o r  A ,  

where 

b )  
1 B = -(a 2 11 b 22 4. a22b11 - a12b21 - a21 12 

(D- 16) 

(D-17) 

The terms A, B, and C are seen t o  be funct ions of t h e  c o e f f i c i e n t s  of t h e  

o r i g i n a l  system of p a r t i a l  d i f f e r e n t i a l  equat ions,  Eq. (D-9). 

If B2 - AC c 0, no real so lu t ions  f o r  X e x i s t ,  and t h e  c h a r a c t e r i s t i c  

curves are imaginary, Par t ia l  d i f f e r e n t i a l  equations t h a t  r e s u l t  i n  imagi- 

nary c h a r a c t e r i s t i c  curves a r e  termed e l l i p t i c .  

Cha rac t e r i s t i c  d i r e c t i o n  e x i s t s  through each po in t ,  and t h e  system is c a l l e d  

2 If B - AC = 0, one real 

parabol ic ,  I f  BL - AC P 0,  two real c h a r a c t e r i s t i c  d i r ec t ions  e x i s t  through 

each p o i n t ,  and the  system i s  c a l l e d  hyperbol ic .  

follow a r e  concerned only w i t h  hyperbol ic  systems 

The discussions which 
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For hyperbol ic  systems, Eq. (D-1) has two d i s t i n c t  so lu t ions  X1 and 

Hence, t h e  two c h a r a c t e r i s t i c  curves s a t i s f y  t h e  two ordinary d i f f e r -  

e n t i a 1  equat ions 

(D- 18) 

Since t h e  roo t s  A1 and A 2  are funct ions of  x, y ,  u and v ,  t h e  hyperbol ic  

cha rac t e r  of  t h e  system depends on t h e  p a r t i c u l a r  funct ions u(x,y) and 

v(x,y) under considerat ion.  When a so lu t ion  u(x,y) and v(x,y) is  i n s e r t e d  

i n t o  Eq. (D-18), t h e  equations dy/dx = Xl(u,v,x,y) and dy/dx = X2(uJvJxJy)  

are two ordinary d i f f e r e n t i a l  equations of t h e  f irst  order  t h a t  def ine  two 

families o f  c h a r a c t e r i s t i c  curves , o r  simply t h e  c h a r a c t e r i s t i c s  , i n  t h e  

(X,Y) plane.  

Returning t o  Eq. (D-12) , which i s  t h e  general  compat ib i l i ty  equation 

f o r  t h e  system, ul  and u2 can be el iminated i n  terms o f  X from Eq. (D-13) .  

Values o f  u1 and u2 from the  so lu t ion  of  Eq. (D-14) can be introduced i n t o  

Eq. (D-13) t o  so lve  e i t h e r  f o r  u1 and a2 d i r e c t l y ,  or f o r  one of  u's  i n  

terms of t h e  other  one. The r e s u l t s  can be introduced i n t o  Eq. (D-12), 

thus e l imina t ing  both a and IJ 

(one f o r  X 

curves given by Eq. (D-18). Thus, Eqs. (D-12) and (D-18) can r ep lace  t h e  

The r e s u l t  is two compat ib i l i ty  equat ions 1 2 "  

and one f o r  X ) r e l a t i n g  du, dv, x and y along t h e  c h a r a c t e r i s t i c  1 2 

o r i g i n a l  system o f  p a r t i a l  d i f f e r e n t i a l  equat ions , Eq. (D-9). 

By analogy t o  t h e  case of  two p a r t i a l  d i f f e r e n t i a l  equat ions d i s -  

cussed i n  t h e  foregoing, t h e  method of  c h a r a c t e r i s t i c s  can be extended 

t o  a system o f  n p a r t i a l  d i f f e r e n t i a l  equat ions.  The governing equat ion 



74 

f o r  such a system i s  Eq. (D-1)  , repeated below. 

j a u j  au 
+ c i = o  1,. . . #n Li = aij  ax + bi j  ay 

The equations spec i f ied  by Eq. (D-1) are combined i n  a l i n e a r  manner t o  

form t h e  following d i f f e r e n t i a l  operator .  

= a l  L~ + u L + ... + Q Ln = 0 (D-19) 
2 2  n L = ai Li 

Put t ing Eq. (D-19) i n t o  t h e  form of Eq. (D-4) r e s u l t s  i n  t h e  general  com- 

p a t i b i l i t y  equation f o r  t h e  system 

(a. .a.) duj  + ciai dx = 0 
1J 1 

(D-20) 

In order  f o r  Eq. (D-20) t o  be va l id ,  t h e  following expression f o r  X must 

be t rue .  

a a.X = b..a i j  1 ij i 
(D-21) 

Equation (D-21) cons i s t s  of n equations f o r  X when j takes on values 1 

through n.  Solving f o r  ai  y i e lds  

a.(aijX - b. .) = 0 
1 11 

(D- 22) 

For t h e  so lu t ion  of t h e  system of equations defined by Eq. (D-22) t o  be 

other  than zero, t h e  determinant o f  t h e  coe f f i c i en t s  of ai must vanish: 

laijX - b . . l  = 0 
13 

= l r . . # n  
= 1, ...n) 

(D-23) 
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The expanded determinant r e s u l t s  i n  an a lgeb ra i c  equation of  t he  n th  

degree forx  = dy/dx, giving n roo t s ,  Am (m = 1, 2 , . e e 0 , n ) ,  which determine 

n c h a r a c t e r i s t i c  d i r ec t ions .  

system is  t o t a l l y  hyperbolic,  

terist ics s a t i s f y i n g  the  ordinary d i f f e r e n t i a l  equations.  

- 

If a l l  n r o o t s  a r e  d i s t i n c t  and real ,  t he  

In t h a t  case t h e r e  a r e  n families of charac- 

(m = 1, . . , n )  (D-24) 

Once t h e  Am a r e  determined from Eq. (D-24), t h e  ai  can be evaluated 

from Eq. (D-21). In genera l ,  a l l  t he  u. but  one can be  solved f o r  i n  terms 

of  t h e  remaining one which can then be cancel led out i n  Eq. (D-20). 

r e s u l t s ,  when s u b s t i t u t e d  i n  the  general  compat ib i l i ty  equation, Eq. (D-20), 

determine t h e  compat ib i l i ty  equations f o r  t h e  system, Equations (D-20) and 

(D-24) can r ep lace  t h e  o r i g i n a l  system of  p a r t i a l  d i f f e r e n t i a l  equat ions,  

1 

These 

Eq. (D-l)o 

The i n i t i a l  value problem can now be formulated f o r  t h e  above system 

o f  hyperbol ic  d i f f e r e n t i a l  equat ions,  

(x,y) plane,  and continuous values of uj are a r b i t r a r i l y  prescribed along 

r as i l l u s t r a t e d  i n  Fig. ( D - l ) o  The problem i s  t o  determine, i n  t h e  

neighborhood of  ro, a so lu t ion  uj of t h e  system t h a t  has t h e  prescr ibed  

i n i t i a l  values along r 
d i f f e r e n t i a l  equations by t h e  c h a r a c t e r i s t i c  system, t h e  problem reduces 

t o  solving the  t o t a l  d i f f e r e n t i a l  equations given by the  compat ib i l i ty  

equations along t h e  c h a r a c t e r i s t i c  curves. In  general ,  these  equat ions 

a r e  non-l inear  and coupled. 

on a numerical i t e r a t i o n  technique i s  requi red ,  

Assume a curve r i s  given i n  the  
0 

0 

By rep lac ing  t h e  o r i g i n a l  system o f  p a r t i a l  
0' 

For t h a t  reason, a so lu t ion  procedure based 

"he compat ib i l i ty  equat ions,  



X 
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X 
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each of which is  v a l i d  along one or more o f  t he  c h a r a c t e r i s t i c  curves,  

can be wr i t t en  i n  f i n i t e  d i f f e rence  form, as can t h e  equations of t he  

c h a r a c t e r i s t i c  curves,  By moving along the  c h a r a c t e r i s t i c  curves,  t he  

i n i t i a l  values of  u j  along I' can be extended i n t o  t h e  domain enclosed 

by the  outermost c h a r a c t e r i s t i c  curves passing through the  i n i t i a l  da t a  

curve ro. 

0 

By continuing i n  small s t e p s  along ro, a new curve, r l ,  can 

be obtained with a l l  t h e  values of  u j determined along t h a t  curve, as  

i l l u s t r a t e d  i n  Fig. D - 1 .  

The foregoing considerat ions r e s u l t  i n  t h e  concepts of domain o f  

Figure D-2 i l l u s t r a t e s  t h e  domain dependence and range of  inf luence.  

o f  dependence o f  a po in t  P ,  which i s  the  region i n  t h e  (x,y) plane 

bounded by t h e  outermost c h a r a c t e r i s t i c s  passing through t h e  i n i t i a l  

value l i n e  ro, and i s  the  region wherein the  so lu t ion  o f  t h e  i n i t i a l  

value problem can be es tab l i shed .  

in f luence  of  a po in t  Q on t h e  i n i t i a l  value l i n e  ro, which is  t h e  region 

i n  t h e  (x,y) plane containing a l l  o f  the  po in t s  which are inf luenced by 

t h e  i n i t i a l  d a t a  at po in t  Q. 

a l l  o f  t h e  po in t s  having a domain of dependence containing t h e  po in t  Q. 

Therefore ,  i t  is  t h e  region between the  two outermost c h a r a c t e r i s t i c s  

passing through po in t  Q. 

Figure D-3 i l l u s t r a t e s  t he  range of  

The range of  in f luence  i s  comprised of  

For a so lu t ion  t o  be poss ib le ,  t h e  i n i t i a l  value l i n e  cannot be 

c h a r a c t e r i s t i c  a t  any p lace  unless  i n i t i a l  da t a  a r e  given along two 

i n t e r s e c t i n g  c h a r a c t e r i s t i c  curves.  

d i f f e r e n t  types of  i n i t i a l  value l i n e s  can be solved. 

Several  types of domains having 

By applying the  method of  c h a r a c t e r i s t i c s  a s  summarized i n  t h e  

foregoing d iscuss ion ,  it is poss ib l e  t o  so lve  many complicated systems 
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of part ia l  d i f ferent ia l  equations, provided the system is quasi-l inear 

and hyperbolic. 

f lu id  flow problems. 

The l a t t e r  conditions are frequently encountered i n  



APPENDIX E 

CHARACTERISTICS RESULTING FROM VARIATIONS OF GAS PROPERTIES 

I n  t h i s  sec t ion ,  t h e  method of characteristics as developed i n  

Appendix D w i l l  be employed t o  obtain the  c h a r a c t e r i s t i c  and compatibi l i ty  

equations f o r  t h e  system of p a r t i a l  d i f f e r e n t i a l  equations r e s u l t i n g  from 

t h e  v a r i a t i o n s  of gas proper t ies .  I t  is shown t h a t  t h e  c h a r a c t e r i s t i c  

curves are t h e  Mach l ines and t h e  gas s t reamline,  and t h a t  t he re  are a 

s u f f i c i e n t  number of compat ibi l i ty  equations v a l i d  on these  cha rac t e r i s -  

t i c  curves with which t o  replace t h e  o r i g i n a l  system of p a r t i a l  d i f f e r -  

e n t i a l  equations.  

The system of equations t o  be considered cons i s t s  of t he  t e n  p a r t i a l  

d i f f e r e n t i a l  equations,  Eqs. (1) through ( 5 ) ,  (B-65) , (B-67), (B-69), 
(B-73), and (B-75), which g v e r n  t h e  va r i ab le s  u, v, P, p ,  Ci, h l ,  h2, 

hg, h4, and gi. 

47 

These equations are repeated below f o r  convenience. 

PV PU, + pv + up, + up = - - 
Y Y Y 

p(uux + vu ) + Px = 0 
Y 

p(uvx + w ) + Py = 0 
Y 

n L 
upx + VP - a (upx + vpy) = 1 ~l~ 

i= 1 Y 
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The non-homogeneous terms K1, K 2 ,  K 3 ,  K4 and Ji are defined by E q s .  ( B - 6 6 ) ,  

(B-68), (B-70), (B-74) , and (B-76) These terms involve the  gas p rope r t i e s  

u ,  v. P ,  p ,  and Ci, and t h e  Lagrange m u l t i p l i e r s  hl, h2, h3, h4, and gio 

A s  shown i n  Appendix D, t h e  c h a r a c t e r i s t i c  curves are found by expand- 

ing t h e  following determinant. 

n 1 2 - h u - h v - - h  (P - a p,) - 1 gi(Ci)y + 
2 Y  3 Y  P 4 Y i= 1 

+ Y(hlIy + Ulh,), + V(h3Iy = K2 

1 2  h u + h v + h4 p a (UP, + vpYl + (h21x + (h3ly + 4 x  4 y  

(E-5) 

laijA - b. . I  = 0 (E-11)  
11 
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Terms Coup 1 ing  

Mul t ip l i e r s  t o  

Gas Proper t ies  

The  d e t a i l e d  form of Eq, (E-11) i s  shown below, 

[Mult ipl iers  ] 

[Gas] = 

Zeros 

PA -0 0 

p(uA-v) 0 A 

0 p(ux.v) -1 

0 0 (UX-v) 

0 0 0  

e .  0 .  e .  

0 0 0  

0 .  .. .. 
0 0 0  

(UX-v) 0 0 .  

.. 0 0 

0 0 .. 
e .  

-a 2 (uX-v) 0 

0 p(uX-v)l O *  

0 .  . e  0 0  

.. 0 0 

..I .. .. 
.. 0 0 

= o  

0 

0 

0 

0 

0 

e e  

p (u A-v). 
1 .. 

0 

0 

* *  0 

O D  0 

B C  0 

0 

.. 

.. .. 
* *  0 

.. .. 
p(uX-vJ 

(E-12) 

(E-13) 

The terms denoted by ~ ( u X - V ) ~  a r i s e  from the  c o e f f i c i e n t s  of Eq. (E-S), t h e  

spec ies  con t inu i ty  equat ion,  As ind ica ted ,  t h e r e  a r e  n columns and rows 

i n  Eq. (E-13) corresponding t o  the  n chemical spec ies  being considered, i n  

add i t ion  t o  t h e  fou r  columns and rows corresponding t o  Eqs, (E-1) through 

(E-4), The rows and columns of double dots  0 .  i n d i c a t e  t h e  pos i t i on  of t h e  
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addi t iona l  terms when appl icable .  

w t i p l i e r s ]  = 

yh (UX-v) 0 0 0 .. 0 .. 0 

-Y 0 (uh-v) 0 0 .. 0 .. 0 

0 h -1 (uh-v) 0 .. 0 .. 0 

0 .. 0 y(d-v)  a 2 h  -a2 o o .. 

.. .. 0 .  .. .. .. .. .. .. 
0 0 0 0 0  0. p ( U q  0 

.. .. .. .. .. .. 0 .  .. .. 
0 0 0 0 0  0 .  0 .* p(uh-v& 

(E- 14) 

As i n  Eq. (E-13), t he  terms ~ ( u X - V ) ~  arise from the c o e f f i c i e n t s  of t h e  

n equations contained i n  Eq. (E-10). 

Since the  upper r i g h t  corner of t h e  determinant given i n  Eq. (E-12) 

i s  f i l l e d  with zeros,  t h e  expansion of Eq. (E-12) reduces t o  t h e  following 

form. 

I [Gas11 x I [Mult ipl iers] l  = 0 (E- 15) 

S e t t i n g  Eq. (E-13) equal t o  zero r e s u l t s  i n  t h e  following expression. 

2 2  2 2 [A  (u - a - 2 u v ~  + (v2 - a 11 (UX - v)2+n = o (E- 16) 

The c h a r a c t e r i s t i c  curves are found by solving f o r  A, thus giving f o r  t h i s  

system t h e  Mach l i n e s  each appearing once and t h e  gas s t reamline appearing 
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(2+n) times. 

X = L V  
dx u 

= i y =  * a 2Jb? - 1 
2 2  u - a  dx 

(E-17) 

(E-18) 

The flow angle and t h e  Mach angle are defined by t h e  following equations.  

-1 v e = t a n  - 
U 

-1 1 a = s i n  - M 

In  terms of 8 and a, Eq. (E-18) becomes 

S e t t i n g  Eq. (E-14) equal t o  zero gives the  following r e s u l t .  

(E- 19) 

(E-20) 

(E-21) 

(E-22) 

Equation (E-22) i s  t h e  same as Eq (E-16). Hence, t h e  c h a r a c t e r i s t i c  curves 

obtained from Eq. (E-22) w i l l  again be t h e  Mach l i n e s  and t h e  gas stream- 

l i n e  appearing (2+n) times. 

Thus, t h e  c h a r a c t e r i s t i c  curves obtained f o r  t he  system of p a r t i a l  

d i f f e r e n t i a l  equations,  Eqs. (E-1) through (E-lo), are t h e  gas s t reaml ine  

appearing (4+2n) times, and the  gas Mach l i n e s  each appearing two times, 
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A t o t a l  of (8+2n) d i s t i n c t ,  real c h a r a c t e r i s t i c  curves thus e x i s t ,  making 

the  system t o t a l l y  hyperbolic,  

To determine t h e  compatibi l i ty  equations f o r  t h e  system of p a r t i a l  

d i f f e r e n t i a l  equations,  Eqs. (E-1) through (E-lo), t he  method developed 

i n  Appendix D w i l l  be employed. The general  compat ibi l i ty  equation is 

found by forming t h e  sum uiLi, where the  ui are unknown functions.  

the  present  case, Eqs, (E-1) through (E-4) w i l l  be  mul t ip l ied  by u1 through 

In  

Eqs. (E-6) through (E-9) w i l l  be  mul t ip l ied  by us through us, and Eqs. 

These u's, 

u4, 

(E-5) and (E-10) w i l l  be mul t ip l ied  by Bi and ni respect ively.  

e ' s ,  and n's are a r b i t r a r y  funct ions employed i n  the  determination of t h e  

compatibi l i ty  equations,  and are not  the  same as the  o ' s ,  e ' s ,  and 0 ' s  

defined i n  t h e  Nomenclature, Section V. Thus after some grouping, t h e  

following equation is obtained. 

(pol + puu2 - h2Us + h4a7)du +(puu3 - h3U5)dv + 

1 1 2 1 2  - - h4u5 + - h u )dP + [uul - a uu4 + - h a us + P 2 8  D 4  
+ (a2 + UU4 

P 

n 
+ 1 h a2uu, + h a2u niai]dp + 1 ( w e i  - u5gi)dCi + 

i=l i= 1 P 4  

2 * (yu5 + yuu8)dhl + (uus + u7 + a u8)dh2 + (uu6)dh3 + 

n 8 n 

i=l j = l  J J  i= 1 
+ (uu7)dh4 + 1 punidgi = 1 u.N.dx + 1 (eiui + ~ . J . ) d x  (E-23) 

1 1  

In Eq. (E-23), N .  r epresents  t h e  non-homogeneous terms i n  Eqs. (E-1) through 
J 
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(E-4) and (E-6) through (E-9), 

terms a r i s i n g  i n  Eqs, (E-5) and (E-10) respec t ive ly .  

The terms ai and Ji a r e  t h e  non-homogeneous 

The equations for A ,  obtained as discussed i n  Appendix D, are a s  follows. 

p a l  + P V U ~  - h306 + h4u7 

1 1 
p 4 6  p 3 8  
1 1 
p 4 5  p 2 8  

- - h a  + - h ~  u3 + VU4 
A =  

u 2 + u u 4 - - h a  + - - h a  

n 
1 nisi i= 1 
n 

- a uu4 + - h4a as + - h a uu7 + h4a u 1 oiai 
i=l 

2 1 2  1 2  2 
vul - a vu 

uu 

+ - h a u + - h a vu7 + h4a v 4 p 4  6 P 4  
A =  

2 1 2  1 2  2 
1 P P 4  

vu - 
2 I .  ~ 

uu5 + u7 + a ug 

2 
"'6 + '7 ' a '8 A =  

6 uu 

( i = l ,  ,n) 

(E-24) 

(E- 25) 

(E-26) 

(E-27) 

(E-28) 

(E-29) 

(E-30) 

(E-31) 

V'7 

uu 7 
A = -  (E-32) 
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( i = l , * - , n )  (E-33) 

Rearranging Eqs, (E-24) through (E-33) gives  t h e  following equations f o r  

through u8, Bi, and vi, i n  terms of the  c h a r a c t e r i s t i c  d i r e c t i o n  A .  al 

al(pA) + u ~ P ( u ~ - v )  + as(-h2A) + a6(hZ) + u7(h4A) = 0 (E-34) 

1 1 
5 P 4  6 P  4 

a2(A) + u3(-1) + u~(u~-v) + u (-- h A )  + u (- h ) + 

1 -(h A - h3) = 0 + u 
8 P  2 

n 
1 n.a = 0 i i  i= 1 

1 2  2 + u (- h a )(uX-v) + h4a (uA-v) 7 P  4 

P ( u x - v ) ~ ~  -+ u5(-gih) + u6(gi) = o ( i = l , .  ,n) 

u p )  + U g ( - l )  + u (UX-v) = 0 8 

2 aS(uA-v) += u,(X) + ug(a A )  = 0 

2 u (uA-v) + u,(-l> += a8(-a - 0 6 

U7(UA-V) = 0 

(E-36) 

(E-37) 

(E-38) 

(E-39) 

(E-40) 

(E-41) 

(E-42) 
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p(uX-v)rli = 0 ( i= l , . . , n )  (E-43) 

Equations (E-34) through (E-43) may now be solved f o r  a l  through a8, 

The r e s u l t s  may be s u b s t i t u t e d  ei, and q i ,  f o r  each s p e c i f i c  value of A .  

back i n t o  t h e  general  compat ib i l i ty  equation, Eq. (E-23), t o  ob ta in  the  

p a r t i c u l a r  compat ib i l i ty  equation which i s  v a l i d  on t h e  c h a r a c t e r i s t i c  

curve p e r t i n e n t  t o  t h e  value of X chosen, In  t h e  present  case, only two 

separa te  equations f o r  X e x i s t ,  Eqs. (E-17) and (E-18). Even though Eq. 

(E-18) is  a c t u a l l y  two equations when the  p lus  and minus s igns  are con- 

s idered ,  t h e  combined form of  the  equation may be employed t o  obta in  a 

set of  compat ib i l i ty  equations which w i l l  then be v a l i d  on both charac te r -  

i s t i c s  obtained from Eq. (E-18). The compat ib i l i ty  equations v a l i d  on 

the  gas s t reaml ine  w i l l  be determined first,  

On t h e  gas s t reamline,  Eq, (E-17) becomes 

(UX-v) = 0 (E-44) 

S u b s t i t u t i n g  E q .  ( E - 4 4 )  i n t o  E q s .  ( E - 3 4 )  through ( E - 4 3 )  and so lv ing  t h e  

r e s u l t i n g  system of  equations gives  the  following results. 

1 2  
D 8 a l  = - h4a a 

1 2 a l  = - h  a ag 0 4  

(E-45) 

(E- 46) 

(E-47) = Xu2 + - 1 (h2X-h ) a  
a3 P 3 8  
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a6 = ha5 

a6 = ha5 

a6 = ha5 

2 
8 a, = -a u 

2 
8 a, = -a u 

a,(O) = 0 

( i=13  ,n) 

( i = l  , ,n) 

(E-48) 

(E-49) 

(E-SO) 

(E-51) 

(E-52) 

(E-53) 

(E-54) 

Of t h e  above t en  equat ions,  four  independent r e l a t i o n s h i p s  are given by Eqs. 

(E-45) (E-47), (E-48) and (E-51) 

Thus, fou r  equat ions e x i s t  r e l a t i n g  the  e igh t  a ‘ s o  

appear i n  t h e  system of equations,  and i s  the re fo re  a r b i t r a r y .  Hence, t h ree  

o f  t h e  remaining seven (T e~ are a r b i t r a r y  and independent, 

u a r e  chosen as being a r b i t r a r y ,  a u u and a can be expressed i n  

terms of  these  fou r  by t h e  four  equations obtained above. Subs t i t u t ing  those 

fou r  equations i n t o  the  general  compat ib i l i ty  equation, Eq. (E-23), and solv-  

ing f o r  t h e  c o e f f i c i e n t s  of the  four  a r b i t r a r y  a i l s ,  the  a r b i t r a r y  Bits, and 

the  a r b i t r a r y  ni’s, gives  the  following r e s u l t ,  

Observe t h a t  Bi and qi are a r b i t r a r y ,  

Note t h a t  a4 does not  
i 

If a2, a4, as, and 
1 

8 1’ 3’ 6’ 7 
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n 

i= 1 
a2 {pudu + pvdv + dP) + u4 {udP - a 2 udp - 1 $idx) + 

+ u {-h2du - h3dv - - 1 h4 (dP - a 2 dp) - f gidCi + 

i=l 5 P 

+ ydhl + udh2 + vdh3 - (Kldx + KZdY)) + 

+ u {h4a 2 du - h4a 2 du + u(h2A-hj)dv + - 1 h2dP + 
8 P 

1 2  2 2 2 + - h4a udp - a2 1 h a udp + yudhl - a dh2 + a dh2 
P P 4  

2 2 1 2  - a udh + a K3dx - K4dx + - h a vdx) + 
4 Y 4  

n 
1 ei {pudCi - aidx) + 

i=l 
+ 

(E-55 2 n 
1 ni {h4a aiudp + pudg 

i- 1 
+ - J i ~ x )  = 0 i I 

Equation (E-17) has been subs t i t u t ed  i n t o  Eq. (E-55) t o  eliminate A wherever 

it appeared. Since u2 ,  a4, as, u8, ei, and 0 

c o e f f i c i e n t s  must be i d e n t i c a l l y  zero. 

equations v a l i d  on a gas streamline are obtained. 

are a l l  a r b i t r a r y ,  t h e i r  i 
Thus t h e  following compat ib i l i ty  

n 

i-1 

2 1 dP - a dp = - 1 $idx 
U 

(E-57) 
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pudCi = oidx ( i = l D  ., e (E-58) 

n 
1 gidCi + ydhl + 

i= 1 

1 2 - h2du - hgdv - - h4 (dP - a dp) - P 

Q udh2 + vdh3 = Kldx + K2dy 

l 1 2  
P 

(vh2 - uh3)dv * - h2 dP - - P h4a u (y-1)dp + yudhl - 

1 2 2 
Y 4  

- u a i  h4 = - - h a v dx - a K3dx + K4dx 

pudgi = Jidx - h4a 2 a.udp (i=lB ,n) 
1 

(E-59) 

(E-60) 

(E-61) 

On Mach l ines ,  Eq, (E,-18) becomes 

(E-62) 2 2 2  2 2  A (u -a ) - 2uvX Q (v -a ) = 0 

Proceeding as before  by s u b s t i t u t i n g  Eqo (E-62) i n t o  Eqs. (E-34) through 

(E-431, t h e  following equations are obtained, 

2 1 - b 2  ' ( U : ~ Y )  "41 '8 

2 Aa - 
(UX-v) 4 p 

a 2  - - (E-63) 

2 
(E-64) P 2 Xa 

(uX-v) '4 ' [[u;-v) h4 "31 '8 
- 

u3 - 

1 
4 P 

9 u (uX-V) =+ - [(uA-v)h4 + (h2A-h3)u8] = 0 a2X - a3 

2 1 2  
8 a l  = a u + - h 4 a  u 

4 P  

(E-65) 

(E-66) 
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1 2  1 
P i 8 - gi‘8 fIi = - - h4a a u 

U8(0) = 0 

2 
a X  u us = - (uX-V) 8 

2 a 
‘6 = ‘(UX-VT ‘8 

( i = l , .  . ,n) (E-67) 

(E-68) 

(E-69) 

(E-70) 

u7 = 0 (E-71) 

ni = 0 ( i = l , .  . ,n) (E-72) 

Multiplying Eq. (E-63) by - A  and adding the  r e s u l t  t o  Eq. (E-64) gives  Eq. 

(E-65). Hence, Eq. (E-65) is  not  an independent equation. The e i g h t  

equat ions,  Eqs. (E-63), (E-64), (E-66), (E-67), and (E-69) through (E-72), 

relate t h e  b i t s ,  f I . I s ,  and n i t s .  

Choosing uq and u8 t o  be a r b i t r a r y ,  s u b s t i t u t i n g  t h e  above equations i n t o  

t h e  general  compat ib i l i ty  equation, Eq. (E-23), s e t t i n g  the c o e f f i c i e n t s  

of u and u equal t o  zero, and s implifying t h e  r e s u l t  gives  the  following 

two equat ions,  

Thus, two of t h e  u i t s  are a r b i t r a r y .  
1 

4 8 

2 a (vdu - udv) * (E-73) 
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n 
1 gidCi - ydhl Z 

i=l 

1 2 
h2du + h dv + - h4 (dP - a dp) + 3 P 

n 
f I tana(udy - vdx) [K4 + p 1 h4 1 $i] 
- 
U2 i=l 

(E-74) 

The upper s igns  i n  Eqs. (E-73) and (E-74) p e r t a i n  t o  l e f t  running Mach 

l i n e s  and t h e  lower s igns  t o  r i g h t  running Mach l i n e s ,  

and (E-74) are each v a l i d  on both Mach l i n e s ,  thus giving fou r  independent 

equations 

Equations (E-73) 

In  summary, f o r  t he  system of equations (E-1) through ( E - l o ) ,  (8+2n) 

c h a r a c t e r i s t i c  equations were found of which three ,  the  two Mach l i n e s  and 

the  gas s t reamline,  are d i s t i n c t ,  

each v a l i d  along one of t h e  c h a r a c t e r i s t i c  curves, were found. Thus the  

o r i g i n a l  system of p a r t i a l  d i f f e r e n t i a l  equations may be replaced by t h e  

system of  Charac t e r i s t i c  and compatibi l i ty  equations developed i n  t h i s  

Appendix. 

system, ind ica t ing  which compatibi l i ty  equations are v a l i d  on which char- 

acter is t ic  curves. 

A t o t a l  of (8+2n) compat ib i l i ty  equations,  

Figure E-1  i l l u s t r a t e s  t h e  c h a r a c t e r i s t i c  ne t  f o r  t h e  present  
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Y '  r RIGHT RUNNING MACH LINE 
(E-73) (E-74) 

STREAM LINE 

RIGHT RUNNING MACH LINE 
(E-73) (E-74) 

STREAM LINE 

LEFT RUNNING MACH LINE 
(E-73) (E-74) 

LEFT RUNNING MACH LINE 
(E-73) (E-74) 

LINEl 

FIGURE E-1, CHARACTERISTIC NETWORK FOR GAS 
PROPERTIES AND LAGRANGE MULTIPLIERS 



94 

APPENDIX F 

EVALUATION OF DERIVATIVES OF THERMODYNAMIC FUNCTIONS 

The s e t  of p a r t i a l  d i f f e r e n t i a l  equations,  Eqs, (35) through (39), 

obtained for  determining the  Eagsange m u l t i p l i e r s  i n  region ABC contains  

some complicated de r iva t ives  of t h e  funct ions Jli and u.. 1 

appear i n  t h e  terms K3, KqB and Ji defined by Eqs, (42) ,  (43), and (44) 

r e spec t ive ly ,  

These de r iva t ives  

These terms are repeated below f o r  convenience of d iscuss ion ,  

In  t h i s  Appendix, t hese  t e r n s  are expressed i n  terns of  t h e  fundamental 

thermodynamic p rope r t i e s  of  t h e  system, 

The func t ions  rLi and ai as def ined by Eqs, (7) and (6) r e spec t ive ly  

both depend on t h e  temperature 9" in addi t ion  t o  t h e  pressure  P, dens i ty  P, 

and spec ies  mass f r a c t i o n s  Cko In  t h e  opt imizat ion ana lys i s ,  t h e s e  param- 

eters were assumed t o  depend only on P, P, and Cks  t h e  temperature depend- 

ence being el iminated by s u b s t i t u t i o n  of the p e r f e e t  gas law, Eq. ( 8 ) ,  
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This transfopmation is accomplished here by employing two different 

functional forms for 9, and ai From Eqo (7) 

n n 

where 

I 
The function JI, and JIi are equal for eompatable values of the arguments 

of each functional form, 

Taking derivatives of Eq. ( F - 6 )  gives 

Substituting E q ,  (F-4)  into Eqs, (P-%> through (F-9) gives the following 

results  

(F-10) 



(F-11) 

(F-12) 

The species  source funct ion ai can be t r e a t e d  i n  a similar manner. 

Thus * 

(F-13) 

where a; i s  given by t h e  law of mass ac t ion  i n  Eq. ( 6 ) .  
4 

V I  V !‘ 

I r= 1 j =1 (3) jr - Krr j=1 (a) ’r](F-14] 

The s p e c i f i c  r eac t ion  r a t e  constants  K 

a t u r e  only. Taking de r iva t ives  of Eq. (F-13) gives 

and Km are funct ions of  temper- fr 

The pe r fec t  gas law is given by Eq. (8) 

P T =  n 

k= 1 
p 1 ‘kRk 

(F-15) 

(F-16) 

(F-17) 

(F-18) 
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Taking partial derivatives of Eq. (F-18) results in the following 

expressions. 

(F-19) T Tp = - P 

T T I -  
P P 

RiT 
R TC 0 - -  

i 

(F-20) 

(F-21) 

Substituting Eqs. (F-19) through (F-21) into Eqs, (F-10) through 

(F-12) and Eqs, (F-15) through (F-17) yields the following results. 

m 

R.T 

T 
UiP = aiT p 

(F-22) 

(F-23) 

(F-24) 

(F-25) 

(F-26) T 
Q = u ’  

i p  ip - ‘IT 
R.T 

(F-27) 

Substituting Eqs. (F-22) through (F-27) into Eqs. (F-1) through (F-3) 

results in the following equations for K3, K4, and Jie 
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2 n 
1 (h4a ai + gi )u i  - 1 K 4 = h 4 - i j -  a 1J l i * -  2 n  

i = P  P i=1 

(F-28) 

(F-29) 

A l l  t h a t  remains t o  be done t o  obtain t h e  f i n a l  r e s u l t  is t o  evaluate  

t h e  de r iva t ives  of 4% and aiD defined by E q s ,  (F-5) and (F-14) respec t ive ly ,  

and s u b s t i t u t e  t he  r e s u l t s  i n t o  E q s ,  (F-28) through (F-30), From E q ,  (F-S), 

d4i  = yRidT + RiTdy - (y-1)CpidT - hidy (F-31) 

The s p e c i f i c  heat  r a t i o  y is given by 

y = c  f 6  
P V  

(F-33) 



Y Y dy = - cp dCP - q d C v  
n 

ill 
cp = 1 cpici 

n 
dCp = 1 CpidCi 

i-1 

n 

'v = iilCviCi 
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(F-34) 

(F-35) 

(F-36) 

(F-37) 

(F-38) 
n 

= 1 CvidCi 
dCv i=1 

Combining Eqs. (F-34) through (F-38) gives  t h e  following resul t  f o r  dye 

(F-39) 

where ai is defined by Eq. (24) and is equal t o  

(F-40) ai = - 1 (cpi -6cvi) 
cP 

The c o e f f i c i e n t  of dT i n  Eq. (F-32) can be rearranged as follows. 

Combining Eqs. (F-32), (F-39) and (F-41) g ives  

n 
1 a dC 

k= 1 
d4: = CpaidT + (R.T - hi) y 1 k k  (F-42) 



+IT = Cpai 
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(F-43) 

The derivatives of a i  can be obtained by differentiating Eq. (F-14). 

(F-45) 

(F-46) 

(F-47) 

Substituting Eqs. (F-43) through (F-47) into Eqs. (F-28) through (F-30) 

results in the following final form of the parameters K3, K4, and Ji. 

Wherever $i and a: appear in these equations, they have been replaced by 

$i and ai by means of Eqs. (F-6) and (F-13) respectively. 
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n T CpT n 
K3 p - 

N ( PC.$~] (F-48) 

r=l j= l  j =1 


